
Weak Exogeneity, Cointegration and
Stability Tests*

Annamaria Bianchi�, Lynda Khalaf�, and Giovanni Urga§

January 11, 2025

Abstract

This paper contributes to the literature on time-varying cointegration, identification and
exogeneity. We document the implications on stability testing of restrictions resulting
from a triangular DGP which entails classifying observables in two groups so that a spe-
cific subset does not cointegrate. We show that: (i) such restrictions can substantially
affect break tests; (ii) weak exogeneity throughout the sample alleviates such problems;
(iii) methodological implications may be avoided by an invariant treatment and boot-
straps, using generalized reduced rank regression, with multiple or uncertain break dates.
Analytical, Monte Carlo and empirical analyses illustrate the usefulness of the results.

JEL classification number: C12, C15, C32.

Keywords: Weak Exogeneity, Identification, Structural Stability, Time Varying Cointe-
gration, Reduced Rank Regression.

*We extend our gratitude to Michele Bergamelli for his invaluable contributions. Special thanks go to
Zhuangyan Li for his support and assistance with the Ox code, as well as for his patience in addressing our
numerous and ongoing requests. Lynda Khalaf acknowledges financial support from the Social Sciences
and Humanities Research Council of Canada and the Natural Sciences and Engineering Research Council
of Canada.
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1 Introduction

A central and enduring premise of Sir David Hendry’s work is that exogeneity and param-

eter stability assumptions should not be taken for granted. In this paper, we illustrate

such concerns with focus on a framework that interconnects several features of Hendry’s

contributions: cointegration, structural breaks and exogeneity.

The literature on time-evolving cointegrating relationships has recently gained mo-

mentum, in response to structural stability concerns; see e.g. Phillips et al. (2017) and

Banerjee and Carrion-i Silvestre (2025) in the panel context, and Bierens and Martins

(2010), Martins (2018), Kapetanios et al. (2020), Eroğlu et al. (2022) in time series. This

paper adds to this body of work by revisiting the standard trade-off between a triangular

representation (TR) versus a Vector Error Correction Model (VECM), when parameter

stability is under test.

The motivation for our focus is two fold. First, while the trade-off in question is long-

standing, it has not been analyzed from the perspective of stability testing. Second, we

believe - and actually show - that associated statistical problems can be tackled by giving

up prior weak exogeneity assumptions. Such an approach has long been a main driver of

Hendry’s contributions.

There are several ways of specifying cointegration systems (Gonzalo, 1994; Watson,

1994; Johansen, 2009; Gomez-Biscarri and Hualde, 2015), each determining the statisti-

cal tools required for inference. In particular, the TR classifies considered observables in

two groups so that a set of variables do not cointegrate. The VECM does not depend

on such classifications, yet a popular normalization can define a long-run parameter that

closely reproduces the TR one. Such normalizations place no constraints on the cointegra-

tion space, whereas TRs explicitly restrict this space for identification purposes (Phillips,

1994). While an economic relation can thus be statistically analyzed by interpreting the

TR cointegration coefficient or its normalized VECM counterpart, the statistical under-

pinnings of these alternative specifications are not innocuous.

When the structure is stable, restrictions linking the TR to a VECM form can be for-

mulated. These restrictions resemble linkages between the structural and reduced forms

of simultaneous equations (Phillips, 1994), whereby exogeneity intervenes consequentially.

In the presence of breaks, the mapping between a TR and its VECM form is less straight-
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forward. Motivated by the above, we revisit the fundamental question raised by Phillips

(1991, p.284): ”What if the parameters of the transient dynamics themselves rely on the

cointegrating coefficient?” Extending a prototypical model proposed by Gonzalo (1994),

we address this question for stability testing in a multi-equation systems perspective with

known and uncertain break dates.

Available stability tests for cointegration systems are rather scarce. 1 Early work on

TRs may be traced back to Hansen (1992). The proposed and well known LM test which

is based on a fully-modified or dynamic OLS estimator is designed to assess breaks only in

the long-run regression coefficient. One consequence is that the system’s residual process,

treated non-parametrically, is not assessed for breaks. In contrast, the parametrization

given by VECMs can serve to test adjustment as well as long-run coefficients. VECM

based stability tests identified via specific normalizations include Seo (1998) and Hansen

and Johansen (1999), who also revisit the test of Quintos (1997). Hansen and Johansen

(1999) propose a normalization-free eigenvalue based method. Hansen (2003) proposes the

generalized reduced rank regression (GRR-reg) framework where parameters are piece-

wise constant. Bierens and Martins (2010) introduce a VECM with a smoothly varying

long run parameter, which nests Hansen (2003)’s specification. Bergamelli et al. (2019)

extend GRR-reg tests to account for unknown break dates. GRR-reg seems particularly

well suited to detect parameter discontinuities in a flexible way, for all model parameters,

that is, long run, short run, determinist trend terms, and error variances/covariances. It

is this framework that is our research focus.

Available Monte Carlo designs on all the above-cited stability tests impose weak ex-

ogeneity, which unduly restricts high-order dynamics. Furthermore, there is practically

no guidance on the main question posed by Phillips (1991) which we rephrase here as

it applies to stability assessments: is it necessary that the transient dynamics be jointly

assessed, and are there costs otherwise if residuals are treated non-parametrically?.

With this background, this paper has three main contributions. First, we ask whether

one can reliably test the stability of a TR via GRR-reg based methods. Pursuing the

parallel between TRs and simultaneous equations, the usefulness of reduced forms for

specification testing in the latter context can be traced back to the exact tests of Harvey

and Phillips (1980, 1981a,b, 1989). The TR to VECM mapping is much more intricate

1See e.g. Kejriwal and Perron (2008, 2010) for single equation tests.
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than with linear simultaneous equations, which motivates our work. Formally, we consider

alternative TRs underlying Hansen (2003)’s break test, that yield different insights into

its properties under weak exogeneity or lack there-off. Second, we revisit the bootstrap

validity results from Bergamelli et al. (2019) with a TR as a data generating process (DGP)

and uncertain break dates. Bergamelli et al. (2019) did not consider TRs and Gonzalo

(1994) did not consider breaks. In this respect, this paper is the first that reconciles and

unifies both contexts. Third, we conduct simulations imposing and relaxing exogeneity,

with known and uncertain break dates. An empirical exercise on an interest rate rule for

U.S. data further illustrates the concrete consequences of our analysis.

Results confirm the usefulness of GRR-reg. Specifically, we show that it is possible

to obtain useful GRR-reg based break tests even when the underlying data generating

process (DGP) is a TR. The rationale behind our finding stems from the following fact:

the restrictions linking the TR to its VECM form imply that breaks are imminent in all

VECM parameters when the coefficient of the TR breaks, unless one takes an ex-ante

stand on weak exogeneity in which case breaks may only affect the long run VECM coef-

ficient. Serious distortions may thus result from the outstanding (non-tested) instabilities

when weak exogeneity fails. By relying on the implications of the TR restrictions, thereby

assessing short and long run VECM parameters for breaks and thus avoiding weak exo-

geneity assumptions, GRR-reg based break tests can reliably inform on the stability of

the considered cointegrating relation. Said differently, giving up weak exogeneity makes

stability testing possible without the identification requirements of TRs. Our results fur-

ther underscore the importance of accounting for variance instabilities, which can go a

long way towards substantiating cointegrating relationships in empirical work.

The paper is organized as follows. Section 2 discusses the role of weak exogeneity in

VECM and TRs. Section 3 shows illustrative simulations, Section 4 presents an empirical

application, and Section 5 concludes.
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2 Weak exogeneity and triangular forms

Consider a p-dimensional process {Xt}Tt=1 with cointegration rank p∗. Its VECM form

can be written as the reduced rank regression

∆Xt = αβ⊤Xt−1 +
k−1∑
i=1

Γi∆Xt−i + ϵt, t = 1, . . . , T, (1)

where ϵt
i .i .d∼ N(0,Ω), the adjustment matrix α and cointegration matrix β are p×p∗ with

rank p∗. GRR-reg tests are likelihood ratio procedures to assess (e.g. nested) alternative

VECMs with piece-wise constant time varying parameters that take a similar reduced-

rank regression form.

Stack ∆Xt−1, . . . ,∆Xt−k+1 into the vector Ẏt. Maximizing the system’s likelihood over

β concentrating all other parameters (Johansen, 1995, Chapter 6) amounts to minimizing

S =
|S00|

∣∣β⊤ (
S11 − S10S

−1
00 S01

)
β
∣∣

|β⊤S11β|
, Sij = T−1

∑T

t=1
RitR

⊤
jt, i, j = 0, 1, (2)

where R0t is the least squares (LS) residual from the regression of Ẋt on Ẏt and R1t is the

residual from the regression of Yt on Ẏt, with Ẋt = ∆Xt, Yt = Xt−1.

Now consider the normalization β = (Ip∗ , β̃
⊤)⊤. A TR conformable with Xt = (X⊤

1,t,

X⊤
2,t)

⊤ where X1,t is (p
∗ × 1), X2,t is ((p− p∗)× 1) takes the form

X1,t − β̃⊤X2,t = Zt, (3)

∆X2,t = Vt (4)

(Z⊤
t , V

⊤
t )⊤ = B(L)et (5)

where B(L) is some lag polynomial ensuring stationarity, et is i.i.d. and contemporane-

ously correlated, and Zt and Vt are stationary such that (Z⊤
t , V

⊤
t )⊤ takes form (5). One

aim of this paper is to provide an analytical basis for applying GRR-reg break tests when

a triangular DGP is subsumed.

Early references linking and comparing these representations include Phillips (1991),

Phillips (1994), Phillips and Loretan (1991), Watson (1994), and Gonzalo (1994). In

particular, Watson (1994, Section 3) derives (3)-(5) from the finite order VAR underlying

(1). The mapping in question produces a special structure for B(L), which is typically
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not maintained when DGPs are considered as TRs. Conversely, the above cited works

confirm that specific parametric assumptions on (Z⊤
t , V

⊤
t )⊤are required to include (1) in

(3)-(5), with parameters depending on β̃.

To concretize the consequences of these dependencies, we consider the following TR:

X1,t − β̃⊤X2,t = Zt;
(
Ip∗ −

∑m
j=1 ρjL

j
)
Zt = u1,t (6)

A1X1,t − A2X2,t = Wt;
(
Ip−p∗ −

∑m
j=1 θjL

j
)
∆Wt = u2,t, (7)

where u1,t is p
∗ × 1, u2,t is (p− p∗)× 1,

(
uT
1t, u

T
2t

)T
is a sequence of independent Gaussian

random variables with mean zero and variance matrix Ω. Usual stability assumptions are

maintained, unit roots are imposed, andm refers to the maximum length (some of the lags

may have zero coefficients). This system takes the (3)-(5) form with, et =
(
uT
1,t, u

T
2,t

)T
,

Vt = D−1∆Wt −D−1A1∆Zt, and

B(L)=


(
Ip∗ −

∑m
j=1 ρjL

j
)−1

0

−D−1A1(Ip∗ − L)
(
Ip∗ −

∑m
j=1 ρjL

j
)−1

D−1
(
Ip−p∗ −

∑m
j=1 θjL

j
)−1

 , (8)

and D = A1β̃
⊤ − A2.

2 Weak exogeneity of X2,t with respect to β̃ can be imposed in this

context setting A1 = 0.

Gonzalo (1994) considered a special case of this process with m = 1, θ1 = 0 and p = 2,

in order to compare the properties of then available estimators of β̃, concluding broadly

in favour of VECM reduced rank-based MLE. Khalaf and Urga (2014) conclude along

these same lines for inference purposes, allowing for weak identification. Nevertheless,

these comparisons were not designed for the analysis of structural breaks. Thus, our goal

is a reassessment of this view, taking into account the effects of instability.

The starting point for our analysis is the mapping from the considered TR into a

VECM transform, as derived next. Our objective is to characterize the dependencies

between short and long run VECM parameters. These relationships motivate and explain

our simulation designs and findings.

2All the invertability conditions on the polynomials and on D are conformable with Gonzalo (1994),
although his model is a special case of our model with m = 1, θ1 = 0, p = 2, p∗ = 1.
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Using standard algebra (Harville, 1997, p.99), write (6)-(7) in the VECM form:

∆Xt = BD

∑m
j=1 ρj − Ip∗

0

[
Ip∗ −β̃⊤

]
Xt−1 (9)

+ BD

−∑m
j=2 ρj 0

0 θ1

D−1B−1∆Xt−1 + ...

+ BD

−ρm 0

0 θm−1

D−1B−1∆Xt−(m−1)

+ BD

0 0

0 θm

D−1B−1∆Xt−m + BD

u1,t

u2,t

 ,

Ip∗ −β̃⊤

A1 −A2


−1

= BD, B =

 Ip∗ β̃⊤

0 Ip−p∗

 , D =

 Ip∗ 0

−D−1A1 D−1

 . (10)

Recalling that |B| = 1, the associated concentrated likelihood can be optimized

through the objective function

S̃ =
∣∣D−1

∣∣S ∣∣∣(D−1
)⊤∣∣∣ (11)

where S is as in (2). Indeed, the residual from the regression of Yt on D−1B−1Ẏt is

unaffected by this transformation and the residual R̃0t from the regression of D−1B−1Ẋt

on D−1B−1Ẏt is transformed into D−1B−1R0t, so

∣∣∣T−1
∑T

t=1
R̃0tR̃

⊤
0t

∣∣∣ = ∣∣D−1
∣∣ |S00|

∣∣∣(D−1
)⊤∣∣∣ , (

T−1
∑T

t=1
R̃1tR

⊤
0t

)
= S10

(
D−1

)⊤
.

When A1 = 0, that is when X2,t is weakly exogenous with respect to β̃, D no longer

involves β̃, so minimizing S̃ coincides with minimizing S, which reduces to the standard

VECM approach. When A1 ̸= 0, in addition to the adjustment term, the coefficients of

lags also depend on β̃ via D.3

The above analysis concretely quantifies how TRs restrict the cointegration space. Yet

reduced rank regression can be applied to (9) ignoring the dependence of the adjustment

and lag coefficients on β̃. Following the same argument with time varying parameters calls

3The dependence of the error on β̃ can be ignored, as pointed out in Phillips (1994), Phillips (1991).
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for caution. Our analysis suggests that a time varying long-run parameter in a TR yields a

VECM where all parameters are time varying including lag coefficients when relevant, even

when all other remaining parameters which characterize the transient error dynamics are

constant. This will be the case, unless weak exogeneity holds across the sample. The fact

remains that weak exogeneity is rarely granted with cointegration models in economics. A

well specified GRR-reg framework allowing for breaks in all VECM coefficients thus holds

promise empirically, even if the economic question is formulated via a TR. We provide

supportive simulations in the next section.

To conclude this section, we analyze the consequences of breaks in the TR coefficient

on the deterministic components of the VECM. Such terms have so far been left out of our

discussion for presentation ease, yet their relevance has long been demonstrated; see e.g.

Johansen et al. (2000) who introduce piece-wise linear trends in VECMs. Importantly,

the GRR-reg approach can accommodate breaks in deterministic terms. We build upon

(6)-(7) through the following DGP, affected by one break at date T1:

x1t − β̃(t)x2t = zt, zt = ρzt−1 + u1,t (12)

a1x1t − a2x2t = wt, wt = wt−1 + u2,t,

[
u1,t, u2,t

]⊤
iid∼ N (0, σ2I2), (13)

β̃(t) = β̃111t + β̃212t (14)

with 11t = 1(T0 + 1 ≤ t ≤ T1) and 12t = 1(T1 + 1 ≤ t ≤ T ). This DGP constitutes

our baseline simulation design below, where we set a1 = 1 and a2 = −1. Straightforward

algebraic manipulations yield the following VECM representation of (12)-(13):

∆Xt = Θ(t)

β̃2 − β̃1

0

x2,t−1dt + α(t)β(t)⊤Xt−1 +Θ(t)

u1,t

u2,t

 , (15)

Θ(t) =
1

−a2 + a1β̃(t)

 −a2 β̃(t)

−a1 1

 , dt = ∆12t = −∆11t, (16)

α(t) = Θ(t)

ρ− 1

0

 , β(t) =

 1

−β̃(t− 1)

 , (17)

where dt is a point dummy variable at time T1 + 1. Here ∆Xt = [∆x1,t,∆x2,t]
⊤ and
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Xt−1 = [x1,t−1, x2,t−1]
⊤. Following Johansen et al. (2000), an unrestricted dummy can

be modelled into the conditional likelihood to account for such an outlier at the connec-

tion point. Furthermore, breaks in the variance/covariance matrix of disturbance clearly

emerge through (15). While α(t) is no longer time varying when a1 = 0, that is when weak

exogeneity holds, the disconnect at the junction point and breaks in the error variances

and covariances will remain when β̃2 ̸= β̃1.

Despite the simplicity of the considered illustrative DGP, the key take away is that a

break in the TR coefficient can induce breaks in all components of the VECM. Yet sample

size restrictions may limit ones’ ability to apply a GRR-reg based test allowing for such

a possibility. Our simulations below emphasize the importance of accounting for a time

varying α(t) unless the DGP satisfies weak exogeneity, and of variance instabilities.

3 Numerical evidence

Hansen (1992), Hansen and Johansen (1999) and Hansen (2003) contained no simulation

analysis; the bulk of simulations with systems-based methods (Quintos, 1997; Seo, 1998;

Bierens and Martins, 2010), imposed weak exogeneity, and most available designs con-

sider a stable model as the null hypothesis. Martins (2018) and Bergamelli et al. (2019)

simulated the VECM directly. Instead, we consider null models with or without breaks in

the long run coefficient of a TR where weak identification of the cointegration parameter

in question can be parametrized and weak exogeneity can be imposed and relaxed.

Two sets of experiments are considered. The first set implements Hansen (2003)’s

procedure exactly as proposed, with pre-specified break dates. The null hypothesis is not

restricted to parameter constancy though we formulate a single specific alternative. Next,

we design more general experiments with uncertain break dates.

3.1 Baseline design

We consider null models with one break in the long run coefficient of a TR where ex-

ogeneity does not hold. Formally, we simulate (12)-(13) with T1 = ⌊T/2⌋, β̃1 = 1,

β̃2 = {1.5, 2, 3, 4, 5, 8, 10, 15, 20, 30, 40, 50}, ρ = {0, 0.8}, a1 = 1, a2 = −1, σ = 1 and

T = {100, 300, 500}. It is worth noting that ρ controls the identification of the cointe-

grating relation, which deteriorates as persistence nears the unit boundary.
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We study two different likelihood ratio (LR) tests of one versus two breaks, based on

the GRR-reg

∆Xt = α(t)β(t)⊤Xt−1 + ϵt, (18)

where

β (t) =

[
1 −β̄ (t)

]⊤
, β̄ (t) =

∑3

j=1
βj1jt, (19)

α(t) is conformably piece-wise constant with adjustment parameters denoted by α1, α2 and

α3, and the disturbance ϵt = (ϵ1t, ϵ2t)
⊤ is a sequence of independent zero mean Gaussian

variables with a variance matrix that may also break conformably. In this context, the

LR tests are based on the following two sets of hypotheses

A:

Ha
0 : (β1 ̸= β2, β2 = β3, α1 = α2 = α3) |T1

Ha
1 : (β1 ̸= β2 ̸= β3, α1 = α2 = α3) |T1, T2

,

where the error variance is time invariant under the null and the alternative hypotheses,

and

B:

Hb
0 : (β1 ̸= β2, β2 = β3, α1 ̸= α2, α2 = α3) |T1

Hb
1 : (β1 ̸= β2 ̸= β3, α1 ̸= α2 ̸= α3) |T1, T2

where we maintain breaks in variance. “|” indicates conditioning on the break date Ti,

i = 1, 2, and we set T1 = T/2, T2 = 2T/3.

In both cases, (19) ignores the above-discussed breaks at the connection points, so

both Ha
0 and Hb

0 do not fully match the considered DGP. Realistically, it is rarely possible

to achieve such a match beyond simulation studies. Our design is thus motivated by the

following consideration. The restriction α1 = α2 = α3 that is embedded in Ha
0 does not

conflict with (12)-(13) when a1 = 0 [i.e. when weak exogeneity holds], yet forgoes a key

source of instability in this DGP when, as in our design, a1 = 1 [i.e. when weak exogeneity

fails]. In contrast, Hb
0 reflects the linkages between α(t) and β(t) when weak exogeneity

fails. The breaks in error variance that arise as β̃1 ̸=β̃2 are not directly related to weak

exogeneity assumptions, yet it is important to assess the consequences of variance-driven

misspecifications. One of the key advantages of the GRR-reg is that it allows for variance

instabilities.

Figure 1 reports the empirical rejection frequencies for cases A and B as the magnitude

of the break increases, which is measured via the ratio of β̃2 to β̃1 and 1000 replications.
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Figure 1: Empirical rejection frequencies of the LR tests. The graph reports plots with
on the “x” axis the magnitude of the break, i.e. the ratio between the long-run coeffi-
cient post-break (β̃2) and pre-break (β̃1), while on the “y” axis the empirical rejection
frequencies of H0 for Case A and for Case B. Different sample sizes T and values of ρ are
explored.
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As discussed above, interpreting these rejections as size is strictly incorrect. Yet (15)

under Hb
0 can be viewed as close enough to the DGP, assuming that breaks at connection

points intervene mildly. If so, then rejections of Hb
0 should be close to 5%.

This is exactly what we find: rejection frequencies for Case B conform closely to

the nominal level of 5% for the different sample sizes as well as the different values of

ρ, the parameter which controls the identification of the cointegrating relationship. In

contrast, the observed rejection frequencies of the LR test based on Case A increase with

the magnitude of the break, sizably departing from 5%. These findings, specifically the

way rejections differ between Case A and Case B, suggest that the former is grossly and

consequentially incompatible with the considered DGP. Interestingly, rejections increase

with the sample size and with error serial correlation.

Formally, our experiment assesses power since both Ha
0 and Hb

0 depart from the DGP.

The considered LR test does not check for outliers at the connection points. We thus

do not expect power in this direction, so the observed rejections with Hb
0 are not discon-

certing. Conversely, rejections of Ha
0 underscore the information content of adjustment

parameters and variance instabilities.

To conclude, note that even in larger samples, higher values of ρ affect power negatively

which - although not surprising - is noteworthy. As ρ approaches unity, identification is

compromised in every regime of this design; see Khalaf and Urga (2014) for evidence in

this regard.

3.2 Uncertain alternatives

We next design experiments that allow uncertain information on break dates. Concretely,

we presume that possible breaks can be broadly characterized so that a certain finite

number of GRR-regs can adequately express uncertainty about their number and location.

So instead of looking at a single statistic, we are lead to a finite number of LRs. First we

describe the way these are used for (here, nested) testing purposes. We next describe the

experiments we designed to assess the role of weak exogeneity and identification on the

properties of such tests when the DGPs are TRs.

In the cases reported below, we draw from the counterparts of the TR form (12)-(13)
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allowing for more breaks. In its most general form, the DGP corresponds to

β̃ (t) =
∑5

j=1
β̃j1jt (20)

where 1jt are the break indicators associated with various choices of break dates, reported

below. So to be clear, we refer to (20) to describe the DGP.

For each DGP, we define a GRR-reg of the (15) form, in which case we formulate a

null hypothesis, denoted M0,i where i = 1, 2 and 3 refers to the case in question, against

a given number ni, of alternative GRR-regs denoted Mj,i, j = 1, ..., ni. M0,i may include

breaks, and is nested within M1,i, ...,Mn,i. Breaks are treated as known, and are specified

in each case. As above, α(t) and β(t) are piece-wise constant, as β(t) takes the (19) where

β̄ (t) conforms to the considered breaks. For each of these VECMs, the breaks in question

are associated with: (i) the long-term coefficients only [Table 1] which presumes weak

exogeneity, or (ii) with all VECM coefficients including the variance/covariance [Table 2],

in which case we view this test as relaxing weak exogeneity. Uncertainty around breaks

is incorporated by combining the LR tests that are associated with M1,i, ...,Mn,i, which

we implement as follows [see Bergamelli et al. (2019)].

ni LR statistics, to assess M0,i against each of M1,i, ...,Mn,i, are constructed and

the p-value for each is calculated using the χ2 limiting theory in Hansen (2003). The

minimum of these p-values is retained as the combined test statistic, which we denote Q∗.

We next implement three bootstrap-type procedures to approximate the p-value of Q∗.

See Martins (2018) for bootstrap time-varying cointegration tests and references therein,

and Bergamelli et al. (2019) for a general parametric theory extending GRR-reg tests

beyond known break points. The following algorithm describes the considered methods.

Step 1. Save the estimated parameters under the null hypothesis of m0 regimes

(i.e., model M0), along with centered residuals, denoted E = (ϵ̂1, . . . , ϵ̂T )
⊤, and

corresponding variance/covariance matrices.

Step 2. For b = 1, . . . , B repeat:

(a) Re-sample residuals under the null hypothesis leading to the series {ϵ∗t,b}Tt=1.

Three different procedures are considered for this purpose: (1) A wild bootstrap

approach: multiply each component of E with a realization from a Rademacher
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variable ηt (Davidson and Flachaire, 2008) which follows a two-point distribu-

tion taking values 1 and −1 with probability 0.5; (2) Separate E into m0 blocks

and draw with replacement within each block, mirroring each regime under the

null hypothesis; (3) using the saved variance/covariance matrices from Step 1

corresponding to each regime and a zero-mean Gaussian distribution, draw

{ϵ∗t,b} parametrically within each block. The resulting procedures will be de-

noted the wild bootstrap (W), semi-parametric [B-SP] and parametric [B-P]

block-regime bootstrap, respectively.

(b) Build recursively the bootstrap counterpart of the observed data, using the

estimated coefficients in Step 1, and the residuals from Step 2a.

(c) Use the bootstrap data from Step 2b to estimate the null and each of the

alternative models, as was done with the observed data. Compute the associ-

ated likelihood ratios and their respective p-values, again as was done with the

observed data, retaining the minimum of these p-values as the bootstrap test

statistic denoted Q∗
b .

Step 3. Compute the empirical p-value p̂(Q∗) = 1
B

∑B
b=1 1(Q

∗
b ≥ Q∗).

Our simulation study relies on three cases, as follows.

Test T0,1 : M0,1 corresponds to the stable GRR-reg, and one alternative GRR-reg is

considered that specifies one break at location T/2 or T/2−20 or T/2+20. Data for

size are simulated under the stable TR, that is (20) with β̃1 = β̃2 = β̃3 = β̃4 = β̃5 =

1. Data for power are simulated given (19) with β̃1 = 1, β̃2 = β̃3 = β̃4 = β̃5 = β̃1+h,

that is with one a break, and that break occurs at T1 = T/2.

Test T0,2 : M0,2 is the GRR-reg affected by one break at location T1, and the alternative

GRR-reg specifies two breaks at locations (T1, T1 + 20), (T1, T1 − 30) or (T1, T1 −

25, T1 + 20). Data for size are simulated under the TR with one break, specifically

(20) with break date T1 and β̃1 = 1, β̃2 = β̃3 = β̃4 = β̃5 = 2. Data for power

are simulated from the TR with two breaks, specifically at locations T/2 and 2T/3

where, in the context of (20), we set β̃1 = 1, β̃2 = 2, β̃3 = β̃4 = β̃5 = 1.5 + h, and

the step h is gradually increased.
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Test T0,3 : M0,3 is the GRR-reg with breaks at locations T1 and T2, and the alternative

GRR-regs specify three breaks at locations (T1, T2, T1 +20), (T1, T2, T2 − 5, T1 +15)

or (T1, T2, T1 + 10, T1 − 10, T2 − 5). Data for size are simulated under the TR (20)

with break dates (T1, T2), and β̃1 = 1, β̃2 = 2, β̃3 = β̃4 = β̃5 = 1.5. Data for power

are simulated from the TR (20), with breaks at locations T/2, 2T/3, and 5T/6,

β̃1 = 1, β̃2 = 2, β̃3 = 1.5, β̃4 = β̃5 = 1.5 + h, and the step h is gradually increased.

In all designs, i.i.d. standard normal disturbances are used as above, and ρ, a1 and a2

are kept constant although various choices are considered reflecting different assumptions

about weak identification and exogeneity. We use 1000 replications and B = 199. As

above, the size interpretation abstracts from breaks in deterministic components.

Results can be summarized as follows. When weak exogeneity is imposed, empirical

rejection frequencies are generally close to the nominal level, and the B-P bootstrap seems

to perform best. The wild bootstrap seems to suffer as more breaks are included in the

model. Basically, we observe oversize in Table 1a just when weak identification is provoked

with ρ = .99.

Turning to Table 1b, results illustrate good power. Rejections increase, as expected,

as h increases away from the null values, and as the sample size increases. The power

of tests is roughly equal to their size when weak identification is provoked; power is not

expected in this case and one may suspect spurious rejections otherwise.

Size results from Table 2a suggest that accounting for breaks in all coefficients is

promising, despite mild oversize with smaller samples with reference to Table 1a. This

confirms our findings with our baseline design. It is important to emphasize that ρ was

restricted to zero in Table 2a so we can zoom-in on weak exogeneity failures in best case

scenarios, since the adverse effects of weak identification are clearly set forth in Table 1a,

again in the most favorable scenario. As far as power is concerned, we do not find major

differences between Tables 1b and 2b.

Broadly, results confirm the superiority of the B-P method. Note that our nota-

tion here differs from the usual block-bootstrap since the null hypothesis clearly defines

regimes here. In fact, the method we denote as B-P is a parametric bootstrap, applied to

the specific piece-wise constant structure of the null model underlying the applied test.

Bergamelli et al. (2019) prove the validity of this bootstrap in GRR-reg. In the examples

15



Table 1: Empirical Rejection Frequencies with Weak Exogeneity Imposed

(a) Size

a1 = 0, ρ = 0 a1 = 0, ρ = 0.8 a1 = 0, ρ = 0.99
T w b-p b-sp w b-p b-sp w b-p b-sp

T0,1

100 5.8 5.4 5.4 6.6 6.4 5.8 8.5 9.0 8.0
200 5.1 4.9 4.8 5.9 4.9 5.0 7.5 7.7 7.2
300 5.5 5.7 5.4 5.4 5.3 5.4 8.7 8.2 7.6
400 6.5 5.8 6.3 6.6 6.1 6.6 9.0 8.4 8.5
500 5.4 5.3 5.0 5.4 5.5 5.1 8.4 7.1 6.4

T0,2

T1 = T/2
100 4.5 4.2 4.1 6.4 4.7 4.5 6.3 7.6 7.6
200 4.9 5.9 5.5 6.3 5.4 5.3 7.9 8.1 8.0
300 4.6 4.3 5.2 5.6 5.7 5.2 7.2 7.1 6.1
400 6.4 6.6 6.7 6.7 6.5 6.2 6.7 7.0 7.3
500 4.4 4.5 5.0 5.0 4.1 4.7 6.4 6.7 6.9

T1 = 20
100 3.2 4.2 4.3 4.8 5.0 4.7 7.3 8.6 8.1
200 5.6 6.2 6.4 7.1 6.7 7.1 6.6 6.1 5.1
300 4.5 4.5 4.7 4.9 5.9 5.6 6.3 5.0 4.8
400 5.7 4.7 5.1 5.0 4.9 4.5 7.5 6.3 5.8
500 4.8 4.6 3.8 4.8 4.1 4.3 6.6 5.2 5.1

T1 = T − 20
100 4.6 5.4 5.0 5.1 5.2 5.2 6.9 8.6 8.6
200 4.0 5.5 5.3 5.3 5.8 5.8 4.9 6.3 6.9
300 4.5 5.5 5.5 5.0 4.9 5.1 5.8 6.3 6.1
400 5.1 5.0 5.0 5.3 5.0 5.2 4.5 6.7 6.1
500 4.1 5.1 5.2 4.5 5.2 4.9 4.0 4.8 5.2

T0,1

T1 = T/2 T2 = 2T/3
100 4.0 4.4 4.3 4.0 4.1 4.5 8.2 8.7 8.3
200 5.3 4.6 5.0 6.6 4.8 4.7 6.8 6.9 7.4
300 5.8 4.5 4.5 8.0 5.6 5.8 7.1 7.4 6.9
400 6.7 5.6 5.4 7.4 5.3 5.2 7.5 8.5 7.6
500 6.0 5.3 4.9 5.8 4.2 4.6 6.4 6.3 6.5

T1 = 20 T2 = 2T/3
100 5.3 5.8 5.6 6.4 5.6 5.7 10.1 9.5 9.6
200 6.0 6.7 5.8 7.6 6.5 6.3 7.3 7.4 7.2
300 5.1 5.7 5.4 5.4 5.3 5.3 8.3 8.0 7.3
400 5.2 5.7 5.1 6.7 5.6 5.8 6.5 7.5 6.7
500 3.6 4.3 4.8 5.0 4.5 4.4 6.5 5.9 6.0

T1 = T − 20 T2 = T/2
100 5.5 5.0 5.4 5.8 4.5 5.5 9.6 9.3 9.5
200 4.7 4.8 4.7 6.2 5.7 5.0 6.5 7.6 8.0
300 5.4 5.0 4.6 7.6 5.8 6.7 8.0 7.3 7.6
400 6.1 6.3 6.1 6.7 5.9 5.6 5.5 5.9 5.3
500 5.0 4.7 4.2 6.0 4.3 4.5 4.6 5.2 4.7

(b) Power

a1 = 0, ρ = 0 a1 = 0, ρ = 0.8 a1 = 0, ρ = 0.99
w b-p b-sp w b-p b-sp w b-p b-sp

T0,1

β2 T = 100
1.1 56.0 57.3 56.2 10.3 9.9 8.7 10.5 8.9 8.4
1.3 94.6 94.6 94.4 25.2 23.7 24.2 10.3 8.0 8.4
1.5 99.0 99.1 99.0 40.7 38.4 38.3 10.8 8.3 9.2
2.0 99.1 99.6 99.7 56.1 56.0 55.8 14.1 11.0 11.4
β2 T = 300
1.1 95.7 95.8 95.7 25.9 25.2 24.1 8.7 8.2 7.5
1.3 100.0 100.0 100.0 73.2 72.4 72.3 9.3 7.4 7.3
1.5 100.0 100.0 100.0 89.0 88.7 88.8 10.7 8.8 8.9
2.0 100.0 100.0 100.0 96.0 96.0 95.9 13.6 11.6 11.2
β2 T = 500
1.1 100.0 99.9 99.8 47.3 46.1 47.1 9.6 6.7 5.9
1.3 100.0 100.0 100.0 91.6 91.2 91.0 11.2 8.4 8.0
1.5 100.0 100.0 100.0 98.9 98.8 98.8 11.1 9.3 8.6
2.0 99.9 99.9 99.9 99.5 99.6 99.8 17.1 14.3 13.1

T0,2

β3 T = 100
2.1 46.0 43.2 41.9 7.8 6.7 6.7 7.5 8.7 7.9
2.3 83.7 81.1 79.8 18.0 15.4 15.6 8.2 8.8 8.5
2.5 93.6 91.7 91.6 30.2 25.4 26.7 8.0 8.4 9.4
3.0 98.5 97.9 97.9 49.1 44.2 45.1 10.0 10.5 9.9
β3 T = 300
2.1 86.6 86.3 85.1 22.0 20.8 21.2 8.8 7.5 7.6
2.3 99.8 99.8 99.6 62.3 60.7 59.8 8.6 7.4 7.6
2.5 99.9 99.9 99.9 76.5 75.8 76.6 9.6 7.5 7.5
3.0 99.5 99.5 99.5 87.1 86.6 86.0 12.8 9.3 9.6
β3 T = 500
2.1 95.2 95.6 95.0 40.0 38.2 37.6 8.0 6.9 7.6
2.3 100.0 100.0 100.0 80.7 80.4 80.3 9.7 7.0 7.8
2.5 99.9 99.9 99.9 91.9 91.4 91.1 10.3 7.7 8.7
3.0 99.9 99.9 99.9 97.8 97.9 97.3 13.1 11.1 11.1

T0,3

β4 T = 100
1.6 45.9 46.1 45.9 7.1 6.2 6.7 7.2 9.0 8.3
1.8 80.1 80.4 79.9 24.9 24.2 24.5 7.9 8.8 8.5
2.0 91.0 90.3 90.1 42.6 40.2 39.8 8.8 8.8 8.6
2.5 98.4 98.4 98.3 61.1 59.5 58.8 10.5 9.1 9.7
β4 T = 300
1.6 78.9 80.1 78.9 21.5 21.3 20.4 5.6 7.0 7.6
1.8 98.1 98.5 98.2 61.0 61.2 60.6 6.4 7.6 8.1
2.0 99.8 99.7 99.7 75.2 74.5 74.3 7.4 7.8 8.6
2.5 100.0 100.0 100.0 87.6 87.5 86.9 10.7 9.9 9.9
β4 T = 500
1.6 91.3 91.5 91.0 40.0 40.9 40.6 4.8 5.7 6.1
1.8 99.9 99.9 99.9 77.5 78.1 77.0 5.4 6.6 6.4
2.0 99.9 99.9 99.9 88.8 88.6 88.1 6.8 8.0 7.8
2.5 100.0 100.0 100.0 96.3 96.2 96.3 16.2 15.2 14.9

Note: The table reports nominal level used to compute the empirical rejection frequencies is 5%. “w”
denotes wild bootstrap, “b-p” block-regime bootstrap with parametric resampling and “b-sp” block-
regime bootstrap with semi-parametric resampling.
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Table 2: Empirical Rejection Frequencies with Weak Exogeneity Relaxed

(a) Size

a1 = 0, ρ = 0 a1 = 0, ρ = 0 a1 = 0, ρ = 0
T w b-p b-sp w b-p b-sp w b-p b-sp

T0,1 T0,2 T0,3

T1 = T/2 T1 = T/2 T2 = 2T/3
100 5.8 5.0 6.2 6.9 4.8 5.4 9.0 6.6 4.8
200 4.4 4.4 4.1 7.8 6.8 6.1 6.7 5.2 3.8
300 5.7 5.6 4.9 6.1 5.0 4.7 7.8 5.8 4.0
400 5.8 5.3 5.9 7.3 5.3 5.9 9.7 7.0 4.8
500 5.2 5.5 5.2 5.7 4.2 4.3 7.9 5.5 3.2

T1 = 20 T1 = 20 T2 = 2T/3
100 2.8 3.7 3.3 2.7 4.0 3.2
200 4.4 4.5 4.9 5.5 5.3 4.8
300 3.3 3.3 3.4 4.2 4.9 4.0
400 5.3 4.6 4.8 4.3 3.9 3.3
500 3.9 3.3 2.9 4.7 4.8 3.8

T1 = T − 20 T1 = T − 20 T2 = T/2
100 8.9 6.6 5.7 9.5 5.8 4.8
200 6.3 5.5 5.0 9.5 5.6 5.0
300 6.5 5.9 6.3 7.0 4.1 2.7
400 6.1 5.2 5.3 9.9 5.7 4.7
500 5.8 5.9 5.5 9.6 6.1 5.3

(b) Power

a1 = 0, ρ = 0 a1 = 0, ρ = 0 a1 = 0, ρ = 0
w b-p b-sp w b-p b-sp w b-p b-sp

T0,1 T0,2 T0,3

β2 T = 100 β3 T = 100 β4 T = 100
1.1 20.8 20.3 20.2 2.1 36.1 33.5 32.4 1.6 10.2 8.8 7.3
1.3 61.0 61.4 60.5 2.3 73.8 68.9 69.5 1.8 35.6 32.4 30.5
1.5 80.9 80.8 81.1 2.5 86.2 82.6 81.6 2.0 50.4 47.9 44.5
2.0 95.3 95.4 95.3 3.0 93.9 92.6 91.3 2.5 66.4 63.4 61.7
β2 T = 300 β3 T = 300 β4 T = 300
1.1 62.5 62.8 62.7 2.1 78.2 77.5 77.2 1.6 36.7 35.0 31.9
1.3 98.2 98.1 98.1 2.3 98.5 98.6 98.6 1.8 74.3 73.3 71.2
1.5 99.8 99.9 99.7 2.5 98.9 99.8 99.6 2.0 84.4 83.2 80.8
2.0 100.0 100.0 100.0 3.0 99.2 99.9 99.9 2.5 90.9 86.9 85.7
β2 T = 500 β3 T = 500 β4 T = 500
1.1 85.7 85.0 84.8 2.1 91.9 91.7 91.6 1.6 58.8 57.4 53.6
1.3 100.0 100.0 100.0 2.3 99.7 99.7 99.7 1.8 88.6 87.5 85.8
1.5 100.0 100.0 100.0 2.5 97.1 99.7 99.7 2.0 91.8 90.0 89.1
2.0 100.0 100.0 100.0 3.0 99.8 100.0 100.0 2.5 94.3 92.7 91.4

Note: The table reports nominal level used to compute the empirical rejection frequencies is 5%. “w”
denotes wild bootstrap, “b-p” block-regime bootstrap with parametric resampling and “b-sp” block-
regime bootstrap with semi-parametric resampling..

considered here, the true null model is not a GRR-reg but a TR. However, GRR-reg

disregards the TR’s identification restrictions which practically implies that the tested

null hypothesis is a VECM as analyzed by Bergamelli et al. (2019). This preserves the

equi-continuity conditions proved by Bergamelli et al. (2019) and consistency of estima-

tors [see also Hansen (2003, proof of Theorem 8)], which establishes the validity of the

B-P method as applied here.

3.3 Discussion

The above simulations have novel implications for stability testing in the cointegration

framework. Our main finding is positive suggesting that GRR-reg tests can be applied

with success, without knowledge about the precise nature of the DGP. The idea is to

give up weak exogeneity whether it holds or not in the unknown DGP, and to account

for variance instabilities. When weak exogeneity is relaxed, the possibility that long run

and adjustment terms can jointly break needs to be allowed for. This avoids distortions

resulting from weak exogeneity failures, and delivers good power even when weak exogene-

ity holds. Such a framework provides an interesting integration of several fundamental

concepts at the heart of Sir David Hendry’s contributions.

Our results can be positioned relative to Martins (2018), Khalaf and Urga (2014) and

Bergamelli et al. (2019). Martins (2018) recommends (with proof) the wild bootstrap for
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time varying cointegration, except that the piece-wise constant specification of Hansen

(2003) departs from the smoothly evolving assumptions in this case. In contrast, our

B-P scheme that mirrors regimes under the null hypothesis recovers validity as shown in

Bergamelli et al. (2019). Finally, our B-P scheme with stable samples differs from the

Monte Carlo method in Khalaf and Urga (2014) who impose the null explicitly as a TR.

This may explain the outstanding oversize we still observe here, relative to Khalaf and

Urga (2014). Nevertheless, distortions barely exceed 10% in Table 1, which is notewor-

thy. Our findings are unique through our analysis of: (i) the cost of ignoring the TR

explicit restrictions, (ii) known and uncertain breaks, (iii) various bootstraps, and (iv)

the interplay between weak-exogeneity, breaks and identification.

Results with weak identification are still telling. As argued by Khalaf and Urga (2014)

and references therein, inference is adversely affected in this case even in stable and

standard cointegration models. Identification-robust break tests have attracted recent

interest in simultaneous equations yet remain scarce; see e.g. Mavroeidis and Magnusson

(2014) and the few references therein. Overall, despite a vast literature in econometrics,

identification-robust work on cointegration is scarce. Extending Hansen (2003)’s test in

this direction is a worthy research objective.

4 Empirical analysis

We study an interest rate equation for the US with monthly data over the period Septem-

ber 2007 to August 2024. The GRR-reg of interest pertains to the vector

Xt = (it, pt, yt, vixt)
⊤ (21)

where it is the 1-month American dollar LIBOR interest rate, pt is the US Personal

Consumption Expenditure Core (year over year inflation minus the FED’s 2% target),

yt is the US year over year industrial production, and the vixt (Volatility Index) as a

measure of stock-market volatility (See Donati et al, 2025). All data is available from

Bloomberg. Figure 2 reports the graph of the series. In this context, there is no reason

to presume weak exogeneity (see amongst others Clarida et al, 2000 and Carvalho et al,

2021).
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Figure 2: Plot of the series. Source: Bloomberg

From a Taylor (1993, 1999) rule perspective, the focus is on representing how the

Federal Reserve adjusts short term interest rates in response to changes in the considered

measures of economic conditions. Consequently, all the tests that we conduct adopt a

matching normalization. Recall that such a normalization avoids the assumption that is

typically required in a TR, namely that inflation, output and stock market volatility do

not cointegrate.4

We estimate a GRR-reg with break dates corresponding to key historical episodes: (i)

the European sovereign-debt crisis of 2011, (ii) the Donald Trump election bump in 2016,

(iii) the Covid pandemic in 2020, and (iv) the recent interest rate hikes that started in

2022. The corresponding dates are June 2011, December 2016, March 2020, and March

2022. This framework entails that a piece-wise constant cointegrating relation describes

the Federal Reserve reaction function.

In this context, we study the relevance of the European crisis on this function, account-

ing for the remaining breaks which reflect broadly accepted stylized facts. In contrast to

the latter, there seems to be no consensus in the related literature on the relevance of the

4As emphasized in Hansen (2003), the normalization affects the degrees-of-freedom in the limiting
distribution of the LR statistic (in a known way, which is not problematic).
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European crisis to the US economy. The monetary policy report of July 20115 discusses

some transmission effects on economic growth in the US, and some findings are available

documenting some effects on banks and lending. As an example, Allegret et al. (2017)

find that US banks have been sheltered from this crisis. In their analysis of sovereign

credit default swap spreads, Broto and Pérez-Quirós (2015) treat the US as a ”safe coun-

try”. In contrast, De Marco (2019) reports a reduction in short-term funding of banks.

See also Ang and Longstaff (2013) for a comparative analysis of the source of sovereign

credit risk in Europe and the US. These studies are not meant to provide an exhaustive

perspective on this important contagion question, since the related literature is too broad

to be usefully reviewed here. Our aim is to document the existing mixed evidence, which

contextualizes our tested hypothesis. For a general perspective on the European crisis,

see Lane (2012).

We report the results from four LR tests with asymptotic cut-off points. Under the

null hypothesis, the breaks occur in December 2016, March 2020, and March 2022, while

under the alternative hypothesis, the breaks occur in June 2011, December 2016, March

2020, and March 2022.

The first test focuses on breaks in the long run parameters only. This test is inspired by

the hypothesis that is most commonly assessed within a TR, since the transient dynamics

and error variances interfere through the TR residuals. The LR statistic in this case is

4.327 with a p-value of 0.228.

The second test focuses on breaks in the long term and adjustment coefficients, main-

taining the stability of the error variance covariance matrix. Abstracting from breaks

in variance is also inspired by several existing break tests (in cointegration and other

contexts). The LR statistic in this case is 6.428 with a p-value of 0.491.

The third test considers breaks in the long term parameter and in the error variance

covariance matrix, maintaining the adjustment coefficients stable. This test may be jus-

tified through some weak exogeneity assumption. While there is no formal basis for such

an assumption here, this check is motivated by our general objective in this paper. The

LR statistic in this case is 85.039 with a p-value of 0.000.

The fourth test broadens our analysis to the case where short and long parameters

break, allowing for breaks in error variances and covariances. This test conforms to the

5Refer to https://www.federalreserve.gov/monetarypolicy/mpr 20110713 part1.htm.
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most general and preferred specification (abstracting from connection points) as discussed

in the previous sections. The LR statistic in this case is 107.500, with a p-value of 0.000.

Methodologically, our simulations underscore the information content of: (i) breaks in

the adjustment coefficient when there is no reason to presume weak exogeneity, and (ii)

variance instabilities. This is clearly reflected in our findings that would have dismissed

the effect of the European sovereign debt crisis had we restricted our investigation to the

long run cointegration components. Empirically, our results suggest a flexible GRR-reg

with breaks in all parameters at these critical historical episodes, which is a valuable

addition to the literature.

Interestingly, in addition to adjustment terms, we find that breaks in variance are

clear and evident. This reflects the advantages of the GRR-reg approach. From a general

modeling perspective, allowing for variance instabilities may enhance the performance of

cointegration models in empirical applications.

5 Conclusion

This paper contributes to the literature on time varying cointegration, normalization,

identification and exogeneity. Building on the VECM-based GRR-reg framework of

Hansen (2003), we study the implications of a DGP in triangular form that entails clas-

sifying observables in two groups so that a specific subset does not cointegrate. Results

confirm that weak exogeneity throughout the sample alleviates specification problems. Yet

it is often unlikely one can take an ex-ante stand regarding weak exogeneity in economics.

Preferably, we show that time varying cointegration can be statistically analyzed from the

VECM reduced form, notwithstanding the DGP. TRs can be linked to parametric VECMs

by restricting the cointegration space, in the same way identifying restrictions intervene

in simultaneous equations. We find that (unrestricted) GRR-reg tests are remarkably

robust to these and other deviations from standard assumptions, provided the tested null

hypotheses are carefully formulated. Like simultaneous equations, TRs provide natural

representations in economics. However, their identification has methodological implica-

tions that may be avoided by an invariant treatment as with GRR-reg stability tests.
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