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Abstract

Cointegration analysis in a mixed data sampling (MIDAS) regression often assumes that the un-

derlying data generating process (DGP) also is a MIDAS model, that is, the variables are observable

at different frequencies. In this paper we provide an alternative look at cointegration analysis in

MIDAS regressions by assuming that the underlying DGP is a model at the high frequency for both

the dependent and the independent variables, but that somehow only low-frequency observations of

the dependent variable are available. We discuss the representation of the MIDAS model, given an

autoregressive distributed lag model of order (1,1) at the high frequency, for any degree of aggre-

gation of the dependent variable. We discuss a test for cointegration, which includes knowledge of

the specific form of the implied moving average process in the MIDAS model, and we derive its

associated asymptotic distribution. With simulations we examine the empirical performance of the

test. We illustrate using quarterly total inflation as a function of monthly energy prices changes in

the Netherlands.
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1 Introduction

MIDAS regressions involve a dependent variable observed at a low frequency and independent variables

observed at a high frequency. A MIDAS regression (Ghysels et al., 2007) often also includes lags of the

low-frequency dependent variable on the right-hand side. An empirical example is quarterly growth in

Gross Domestic Product (GDP) as the dependent variable and the monthly observed growth in industrial

production as an explanatory variable.
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Cointegration analysis in a MIDAS regression often assumes that the underlying data generating

process (DGP) also is a MIDAS model, that is, the variables are observable at different frequencies

(see e.g. Ghysels et al., 2007, Götz et al., 2014, and Ghysels, 2016). In this paper, following Ghysels

and Miller (2015), we provide an alternative look at cointegration analysis in MIDAS regressions by

assuming that the underlying DGP is a model at the high frequency for both the dependent and the

independent variables, but that somehow only low-frequency observations of the dependent variable

are available. To illustrate, we consider two inflation variables, where we assume quarters as the low

frequency of total inflation and months as the high frequency of energy prices changes.

In this paper we focus on an autoregressive distributed lag (ADL) model of order (1,1) at the highest

frequency for two variables. We derive how cointegration at the high frequency translates to cointegra-

tion in the MIDAS regression. One result is that the MIDAS model has a moving average (MA) error,

as was also observed in vector error correction models (VECMs) by Ghysels and Miller (2015). For

this specific ADL(1,1) model we derive the explicit expression of the first-order autocorrelation coef-

ficient of this MA(1) process. Next, we show that under the null hypothesis of no cointegration, this

autocorrelation coefficient is a function of the aggregation factor. We also derive that when the degree

of aggregation increases, the autocorrelation coefficient increases, converging to 1
4 .

As the MA(1) process is known under the null hypothesis of no cointegration, we incorporate it in

our test for cointegration. We derive the relevant asymptotic theory, and with simulation experiments

we show that the empirical size of the test matches the theory. With further simulation experiments

we demonstrate that including knowledge of the MA(1) parameter increases the power of the test for

cointegration, relative to tests where the MA term is ignored.

The outline of our paper is as follows. In Section 2 we discuss the representation of the MIDAS

model, given the ADL(1,1) model at the high frequency, for any degree of aggregation of the dependent

variable. In Section 3, we discuss the test for cointegration and its associated asymptotic distribution.

With simulations we examine the empirical performance of the test. In Section 4 we illustrate the test

for quarterly total inflation as a function of monthly energy prices changes. Section 5 concludes with

some avenues for further research. An appendix contains mathematical proofs of the main results.

2 Model and representation

We consider a (partially latent) bivarate time series {(yt, xt)′, t = 1, . . . , n}, generated by

yt = αyt−1 + β0xt + β1xt−1 + εt, (1)

xt = xt−1 + ηt, (2)

where {εt} and {ηt} are mutually uncorrelated white noise processes with variances σ2ε and σ2η, re-

spectively. The system consists of an ADL(1,1) model for yt, conditional on xt (1), combined with

a random walk specification (2) for the exogenous variable xt. If |α| < 1 and β0 + β1 ̸= 0, then

the system implies that (yt, xt)′ is cointegrated of order (1,1), with cointegrating vector (1, γ)′, where

γ = (β0 + β1)/(1 − α) is the long-run effect of x on y. The ADL equation can then be rewritten in
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error-correction model (ECM) form:

∆yt = β0∆xt + (α− 1)(yt−1 − γxt−1) + εt. (3)

On the other hand, if α = 1 and β0 + β1 = 0, then the error correction term vanishes in (3), and yt and

xt are integrated of order 1 but not cointegrated. The system can easily be generalized to allow for a

vector of exogenous variables xt, for higher-order lags of yt and xt (leading to an ADL(p,q) with p > 1

and/or q > 1), and for the presence of a constant and, if relevant, a linear trend term in (1)–(2). For

notational convenience, results will be explicitly derived for the basic case, after we will discuss how

these results generalize to such empirically relevant cases.

The time index t = 1, 2, . . . indicates the highest possible observation frequency. We consider the

case where the time series xt is observed at this highest frequency, but for yt we only observe a tempo-

rally aggregated version at a lower frequency. More specifically, we will work under the assumption that

we observe the average of y over m periods, at times t that are a multiple of m. It will be convenient

to introduce the low-frequency time index T = 1, . . . , N , and to denote the low-frequency aggregated

observations by YT = m−1
∑m−1

i=0 ymT−i. We will assume that the number n of high-frequency ob-

servations is a multiple of m, such that N = n/m. For example, our empirical application considers

the case where monthly observations on energy price changes are related to quarterly observed inflation,

such that m = 3, and our sample period consists of n months and hence N = n/3 quarters.1 Following

Ghysels (2016) and Ghysels and Miller (2015), we will combine the low-frequency observations on y

with the high-frequency observations on x by considering the stacked vector process

XT =


X1,T

...

Xm,T

 =


xmT−(m−1)

...

xmT

 , T = 1, . . . , N,

with YT = (Y1,T , . . . , Ym,T )
′ defined analogously, but observing only YT = m−1

∑m
i=1 Yi,T . The full

set of observations therefore is given by (YT , X1,T , . . . , Xm,T )
′, T = 1, . . . , N (in addition to starting

values Y0 and Xi,0).

Proposition 1 derives an ECM representation for YT conditional on (X1,T , . . . , Xm,T ), which will

be the basis for the inference procedures developed in the next section. Before presenting the result for

general integer m, we provide some intuition for the result and its derivation in the specific case that

m = 2. Given (1), the starting point is the implied vector autoregressive (VAR) representation for YT

with exogenous variables XT , in simultaneous-equations form:(
1 0

−α 1

)(
Y1,T

Y2,T

)
=

(
0 α

0 0

)(
Y1,T−1

Y2,T−1

)
+

(
β0 0

β1 β0

)(
X1,T

X2,T

)

+

(
0 β1

0 0

)(
X1,T−1

X2,T−1

)
+

(
E1,T

E2,T

)
,

1In the MIDAS literature, usually the low-frequency observations are indicated by xt, and hence high-frequency observa-

tions by xt−i/m, i = 0, . . . ,m− 1. Our notation avoids such fractional lags, but is otherwise equivalent.
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where E1,T = ε2T−1 and E2,T = ε2T . By inverting the left-hand side matrix (and hence obtaining the

reduced-form VAR representation), and subsequenty pre-multiplying the system by the averaging vector

(12 ,
1
2), we obtain the following equation for YT :

YT = 1
2(α+ α2)Y2,T−1 +

1
2 ((1 + α)β0 + β1)X1,T + 1

2β0X2,T + 1
2(1 + α)β1X2,T−1

+1
2 ((1 + α)E1,T + E2,T ) .

The right-hand side variable Y2,T−1 is unobserved, but can be related to the observed lags (and an

unobserved lagged error) via

1
2(α+ α2)Y2,T−1 = 1

2α
2(Y1,T−1 + Y2,T−1) +

1
2α(Y2,T−1 − αY1,T−1)

= α2YT−1 +
1
2α(β0X2,T−1 + β1X1,T−1 + E2,T−1), (4)

which after substitution and rearrangement of terms leads to the final ECM:

∆YT = (α2 − 1)YT−1 + δXT−1 + β01∆X1,T + β02∆X2,T + UT

= (α2 − 1)(YT−1 − γXT−1) + β01∆X1,T + β02∆X2,T + UT , (5)

where ∆ is the low-frequency differencing operator (such that, e.g., ∆X1,T = X1,T −X1,T−1), where

δ = (1 + α)(β0 + β1), γ =
β0 + β1
1− α

, β01 =
1
2 [β0(1 + α) + β1] , β02 =

1
2β0,

and where UT = 1
2 ((1 + α)E1,T + E2,T + αE2,T−1). We observe that cov(UT , UT−1) = 1

4ασ
2
ε , im-

plying a first-order moving average (MA(1)) structure in the error of (5); this was also observed for

MIDAS-VECM models by Ghysels and Miller (2015). This will be addressed in our inference proce-

dures in the next section.

The MIDAS-ECM result for general m is presented next; the proof of this proposition is given in

the appendix.

Proposition 1 Let {(yt, xt)′}nt=1 be generated by (1)–(2), let m be a positive integer, and define YT =

m−1
∑m−1

i=0 ymT−i, XT = m−1
∑m−1

i=0 xmT−i and Xi,T = xmT−(m−i) for i = 1, . . . ,m, T =

1, . . . , N = n/m. Then YT admits the following ECM representation

∆YT = (αm − 1)YT−1 + δXT−1 +
m∑
i=1

β0i∆Xi,T + UT

= (αm − 1)(YT−1 − γXT−1) +
m∑
i=1

β0i∆Xi,T + UT , (6)

where2

δ =
m−1∑
i=0

αi(β0 + β1), γ =
β0 + β1
1− α

, β0i =
1

m

β0 + (αβ0 + β1)

m−i∑
j=1

αj−1

 , (7)

2In (7), we use the convention that an empty summation of the form
∑0

j=1 equals zero, so that β0m = β0/m.
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and where

UT =
1

m

m∑
i=1

m−i∑
j=0

αj

Ei,T +
1

m

m∑
i=2

 m−1∑
j=m−i+1

αj

Ei,T−1.

Therefore, UT is an MA(1) process with first-order autocorrelation coefficient

ρ =

∑m
i=2

(∑m−i
j=0 α

j
)(∑m−1

j=m−i+1 α
j
)

∑m
i=1

(∑m−i
j=0 α

j
)2

+
∑m

i=2

(∑m−1
j=m−i+1 α

j
)2 . (8)

If α = 1 and β0 + β1 = 0, then the error correction term vanishes from (6), and β0i = β0/m, such that

the model reduces to

∆YT = β0∆XT + UT .

The first-order autocorrelation coefficient then becomes ρ = (m2 − 1)/(4m2 + 2).

Writing the MA(1) process UT = ξT + θξT−1, where ξT is a white noise process with variance σ2ξ ,

the MA(1) coefficient θ can be obtained from the expression for ρ in Proposition 1 from

θ =
1−

√
1− (2ρ)2

2ρ
. (9)

For example, for m = 3 and α = 0.5, the implied MA parameter is θ = 1
6 = 0.167. For m = 3

and α = 1, this increases to θ = 0.221. A higher value of m will lead to a higher coefficient θ, with

a maximum value of θ = 2 −
√
3 = 0.268, corresponding to ρ = 1

4 , for α = 1 and as m → ∞.

Although these MA effects may not be very strong, ignoring them in subsequent analysis will lead

to distorted inference on cointegration, and in particular to size distortions in cointegration tests when

using standard critical values; see, e.g., Boswijk and Franses (1992). Therefore, in the next section we

develop statistical procedures taking into account MA effects, with the MA coefficient restricted to the

value implied by α, which defines this paper’s main contribution to the MIDAS cointegration literature.

3 Testing for cointegration

To obtain a test statistic for cointegration based on the model with an MA(1) term satisfying the restric-

tion implied by Proposition 1, the starting point is the Gaussian conditional log-likelihood:

ℓ(α, β0, β1, σ
2
ξ) = −N

2
log(2πσ2ξ)−

1

2σξ2

N∑
T=1

ξT (α, β0, β1)
2, (10)

where

ξT (α, β0, β1) = (1 + θ(α)L)−1UT (α, β0, β1), (11)

UT (α, β0, β1) = YT − αmYT−1 − δXT−1 −
m∑
i=1

β0i∆Xi,T , (12)

with θ(α) as implied by (8)–(9), and using the parameter definitions in (7). We use the conditional

least-squares approach for the MA term, initalising ξT = (1 + θL)−1UT at zero, such that ξT =
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∑T−1
i=0 (−θ)iUT−i. Note that σ2ξ could be expressed in terms of σ2ε and α, but this imposes no restriction

on the parameters as long as σ2ε varies freely; so we may parametrize the model in terms of σ2ξ instead

of σ2ε .

The likelihood ratio test statistic for H0 : α = 1, β0 + β1 = 0, then becomes

LR = N log
minβ0

∑N
T=1 ξT (1, β0,−β0)2

minα,β0,β1

∑N
T=1 ξT (α, β0, β1)

2
. (13)

The unrestricted minimization problem over α, β0 and β1 in the denominator requires numerical op-

timization. Because UT (1, β0,−β0) = ∆YT − β0∆XT , the restricted estimator of β0 can be simply

obtained by a least-squares regression of (1 + θ(1)L)−1∆YT on (1 + θ(1)L)−1∆XT .

The large-sample asymptotic properties of LR are obtained in the next proposition.

Proposition 2 Let {(yt, xt)′}nt=1 be generated by (1)–(2), with {(εt, ηt)′}nt=1 satisfying an invariance

principle. Let LR be as defined in (13), using the notation defined in Section 2. Then as N → ∞, with

m fixed, and under H0 : α = 1, β0 + β1 = 0,

LR
d−→
∫ 1

0
dW1(u)W (u)′

(∫ 1

0
W (u)W (u)′du

)−1 ∫ 1

0
W (u)dW1(u),

where W (u) = (W1(u),W2(u))
′, u ∈ [0, 1], is a bivariate standard Brownian motion on [0, 1]. Under

H1 : |α| < 1, LR = Op(N).

We find that under the null hypothesis, LR has the same limiting distribution as the Wald test statistic,

proposed by Boswijk and Franses (1992) and Boswijk (1994), would have in the absence of moving

average errors (i.e., when applied to the original high-frequency data). Accurate asymptotic critical

values and p-value functions for the limiting null distribution were obtained by MacKinnon et al. (1999).

The proposition also implies that under the alternative hypothesis of cointegration, the test rejecting for

large values of LR is consistent. Under this alternative, we may expect that inference on the long-run

cointegration parameter γ, based on the (correctly specified) log-likelihood (10), will be asymptotically

mixed normal (so that t-test statistics for hypotheses on γ may be compared with conventional standard

normal critical values).

Proposition 2 does not explicitly characterize the asymptotic null distribution of the Boswijk (1994)

Wald test statistic in the MIDAS regression (6), when no correction for moving average errors is applied.

Analogously to the results for other cointegration tests in Theorems 4 and 5 of Ghysels and Miller (2015),

we expect this null distribution to display bias terms and nuisance parameter dependencies, such that the

use of the MacKinnon et al. (1999) critical values would result in size distortions.

The cointegration test proposed here can be generalized in various directions. First, the case where

xt is a vector-valued integrated (but not cointegrated) process, rather than a univariate random walk, is

easily handled, with minor changes (in that case β0, β1, β0i, γ and δ all become vectors of the same

dimension k, and W becomes a (1 + k)-dimensional standard Brownian motion process). Secondly,

allowing for a constant and possibly a linear trend term in the high-frequency DGP (1) will lead to

corresponding extensions in (6); the resulting LR statistic should then be compared to critical values
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from the appropriate tables for such specifications of the deterministic components. Finally, in empirical

applications we may need to allow for a lag length higher than 1 in the DGP. In that case, the same

approach as in the previous section may be followed to obtain the corresponding MIDAS error correction

model as a generalization of (6). However, the functional form of the coefficients of lagged differences

and of the MA parameters would have to be derived for the specific case at hand.

Monte Carlo simulations of size and power

We end this section with a Monte Carlo simulation exercise to investigate the extent of the finite-sample

size distortions of the Wald test in MIDAS ECM regressions, and of the effectivess of our proposed

LR test to eliminate these size distortions. In addition, we investigate the effect of the degree of time

aggregation, m, on the power of the tests.

As the DGP under the null hypothesis, we take (1)–(2) with α = 1, β0 = 0.2 and β1 = −0.2,

and with (εt, ηt)
′ as an i.i.d. N(0, I2) sequence. We consider two (high-frequency) sample sizes n ∈

{120, 480} , meant to represent either 10 years or 40 years of monthly observations, and we consider the

cases m = 1 (no aggregation), m = 3 (aggregation of yt to quarterly averages) and m = 6 (aggregation

to half-yearly averages). To investigate the power of the tests, we consider α = 0.9, β0 = 0.2 and

β1 = −0.1 for the case n = 120, and α = 0.975, β0 = 0.2 and β1 = −0.175 for the larger sample

size n = 480. This effectively means that we study local power, i.e., we take α = 1 − 12/n and

choose β1 such that γ = (β0 + β1)/(1 − α) = 1 in all cases. We only use asymptotic critical values

(which are invalid for the Wald test when m > 1), hence the Monte Carlo power is not size-corrected.

Note that for a given n, increasing m implies decreasing the number of low-frequency observations

N = n/m. For m = 3 and m = 6, we compare the size and power performance of the Wald test

and our LR test (which explicitly incorporates the known MA component); for m = 1, the two testing

principles effectively coincide, which is why we do not report any separate results for LR in that case.

We perform two versions of all tests: with no deterministic components (denoted Wald and LR), and

with an unrestricted intercept in the error correction model (denoted Waldµ and LRµ). All results are

based on 100, 000 Monte Carlo replications.

From Table 1 we observe that the size distortions of the Wald test, caused by autocorrelation induced

by aggregation, are limited, in particular when an intercept is included in the regression. If the test is

performed with no intercept, there is more evidence of size distortions increasing with m (and hence

with the autocorrelation coefficient ρ), in particular with the smaller sample size. In general, the size

control of our LR test is good, with a worst case empirical size of 0.064 (corresponding to n = 120

and m = 6, hence aggregation to N = 20 half-yearly observations). The differences in the two testing

approaches are more pronounced when considering test power. We observe that for a given sample size n

and DGP, the power of the Wald test clearly decreases with m, whereas the power of the LR test is much

less affected by the use of aggregated observations for yt. Again, this effect is most noticeable in the

smaller sample size. Although we have not provided a theoretical comparison of asymptotic local power

of the two approaches, these simulation results suggest a considerable power gain from accounting for

moving average effects in MIDAS ECM regressions.
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Table 1: Monte Carlo size and power of MIDAS cointegration tests

Size

n = 120 n = 480

m Wald LR Waldµ LRµ Wald LR Waldµ LRµ

1 0.053 0.054 0.051 0.050

3 0.065 0.056 0.048 0.048 0.059 0.051 0.041 0.049

6 0.075 0.064 0.051 0.048 0.061 0.053 0.040 0.046

Power

n = 120 n = 480

m Wald LR Waldµ LRµ Wald LR Waldµ LRµ

1 0.784 0.562 0.774 0.544

3 0.567 0.729 0.362 0.503 0.657 0.761 0.422 0.530

6 0.287 0.654 0.183 0.449 0.571 0.743 0.347 0.512

Note: This table provides Monte Carlo simulation results for the Wald test for cointegration pro-

posed by Boswijk (1994), and the LR test accounting for moving average effects in MIDAS re-

gressions proposed in the present paper. Tests allowing for an unrestricted intercept are denoted

Waldµ and LRµ. The high-frequency sample size is denoted by n, and the number of periods

used for aggregation of the dependent variable is indicated by m. The top panel (“Size”) shows

rejection frequencies of the tests under H0 : α = 1, β0 + β1 = 0, using asymptotic 5% critical

values. The bottom panel (“Power”) shows rejection frequencies of the tests using local alterna-

tives α = 1− 12/n, β0 + β1 = 1−α, using the same asymptotic 5% critical values. The number

of Monte Carlo replications is 100, 000.

4 Empirical application

In this section we illustrate our approach to testing for cointegration in a MIDAS regression. We consider

the monthly observations on total inflation and the monthly observations for inflation in energy prices

(both year-on-year percentages) in the Netherlands3 for the sample 1997M1 to 2021M12, see Figure 1.

Obviously, the two variables show co-movement, and they can serve as an illustration. We denote total

inflation as yt and inflation in energy prices as xt.

When we consider the regression in (1), where we include an intercept, we obtain for α, β0 and

β1 the estimates 0.928, 0.048 and −0.042, respectively. The Wald test for the joint null hypothesis

α = 1, β0 + β1 = 0 has a value of 12.01. Comparing this with the 5% asymptotic critical value of

11.42, see Table IV in MacKinnon et al. (1999), we obtain evidence of the presence of cointegration

amongst the inflation series at the 5% significance level (the p-value, computed using the procedures in

MacKinnon et al. (1999), is 0.040). The cointegrating parameter is estimated as 0.086.

Next, we consider the situation where the total inflation series are aggregated to quarterly averages,
3CPI data from Statistics Netherlands, CBS Open data StatLine, have been obtained via

https://opendata.cbs.nl/statline/portal.html? la=en& catalog=CBS&tableId=83131ENG& theme=1155,

selecting the expenditure categories “000000 All items” and “045000 Electricity, gas and other fuels”.
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Figure 1: Total inflation and inflation in energy prices in the Netherlands, 1997M1–2021M12
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Data source: Statistics Netherlands.

som = 3. When we consider the error correction model in (6), with the inclusion of an intercept, and we

do not incorporate an MA(1) term, we obtain a Wald test statistic for the joint null hypothesis α = 1, β0+

β1 = 0 equal to 8.06, with an asymptotic p-value of 0.168, indicating no evidence of cointegration at

conventional significance levels. We see that this Wald test provides evidence of cointegration only at

the 20% significance level (with a critical value of 7.53).

Evidence in favour of cointegration ever further diminishes when we consider the model in (6) with

an intercept but with an unrestricted MA(1) term. The relevant Wald statistic is now 6.20. However,

when we consider model (6) with an intercept and with the proper restriction on the MA(1) term imposed

in estimation, the relevant likelihood ratio test statistic becomes equal to 10.63. With a p-value of 0.067,

we now find significant evidence of cointegration at the 10% level (corresponding to a critical value of

9.54). The difference between the first and the third test, without accounting for the MA effect and with

the restriction imposed on the MA(1) parameter, respectively, associates with the simulation results in

the previous section, which showed an increase in power when the MA(1) term is properly restricted.

In the last case, we obtain for α, β0 and β1 the estimates 0.932, 0.014 and −0.008, respectively, which

indicates that the cointegrating parameter is estimated as 0.088, which is rather like the case without

temporal aggregation.

5 Discussion

The basic premise in our cointegration analysis in a MIDAS regression model is that there is a high-

frequency data generating process where the variables are observed at the same frequency but that the

dependent variable is actually observed at a lower frequency. Given this data generating process, we

derived the associated MIDAS regression, and we showed that the long-run cointegration parameter

is preserved and that the MIDAS regression contains a moving average term. We also showed that
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under the null hypothesis of no cointegration, the parameter in the moving average term is known. We

incorporated this knowledge in our test for cointegration in the MIDAS model and provided the relevant

asymptotic theory for the case of two related variables. With simulations we demonstrated that our test

has proper size and improved power over the situation where the MA term is ignored. An illustration to

energy inflation and total inflation showed the merits of our approach.

A natural extension of our methodology involves more than two variables, while at the same time

higher order autoregressive models can also be addressed. Basically, we expect that these extensions

lead to similar insights as for the bivariate first order case, which is that we can learn from cointegra-

tion analysis of the MIDAS model what are the long-run and short-run adjustment parameters in the

associated high-frequency model.

A particularly useful application of our method could concern nowcasting important macroeconomic

variables based on high-frequency independent variables. In various countries in the world the statistics

bureaus compile for example GDP data at a low frequency, perhaps even as low as only annually, whereas

there is abundant high-frequency data available that can be scraped from internet sources. As such, our

methodology can easily be implemented to nowcast GDP, perhaps even sequentially as time within a

year proceeds.

Appendix: Proofs

Proof of Proposition 1. Recall the definition of YT = (Y1,T , . . . , Ym,T )
′ = (ymT−(m−1), . . . , ymT )

′,

and similarly define XT and ET from xt and εt, respectively. The high-frequency DGP (1) can be

expressed in structural VAR form (with exogenous regressors):

A0YT = A1YT−1 +B0XT +B1XT−1 + ET , (A.1)

where

A0 = Im − αL, A1 = αe1e
′
m, B0 = β0Im + β1L, B1 = β1e1e

′
m,

and where Im is the m ×m identity matrix, ei is the ith unit vector of dimension m, and L an m ×m

matrix with Lij = 1 for i = j + 1, and zero otherwise (the lag transformation matrix). The reduced

form VAR model is

YT = ΦYT−1 + Γ0XT + Γ1XT−1 +ΨET , (A.2)

where (defining L0 = Im)

Φ = A−1
0 A1 =

(
m∑
i=1

αiei

)
e′m, Γ0 = A−1

0 B0 = β0Im + (αβ0 + β1)

m−1∑
i=1

αi−1Li,

Ψ = A−1
0 =

m∑
i=1

αi−1Li−1, Γ1 = A−1
0 B1 = β1

(
m∑
i=1

αi−1ei

)
e′m.

We wish to work out the dynamics for YT := m−1
∑m

i=1 Yi,T , conditional on the high-frequency

Xi,T processes. Let sm =
∑m

i=1 ei, an m-vector of ones (“summing vector”), so that YT = m−1s′mYT .

10



We find

mYT = s′mΦYT−1 + s′mΓ0XT + s′mΓ1XT−1 + s′mΨET , (A.3)

with

s′mΦ =

(
m∑
i=1

αi

)
e′m, s′mΓ0 = β0s

′
m + (αβ0 + β1)

m−1∑
i=1

m−i∑
j=1

αj−1

 e′i,

s′mΓ1 = β1

(
m∑
i=1

αi−1

)
e′m, s′mΨ =

m∑
i=1

m−i∑
j=0

αj

 e′i.

The lagged dependent term in (A.3) depends on e′mYT−1 = Ym,T−1, whereas we are looking for a

representation involving only the low-frequency YT−1. To address this, we make use of(
m∑
i=1

αi

)
Ym,T−1 − αmmYT−1 =

m−1∑
i=1

αi(Ym,T−1 − αm−iYi,T−1).

From (A.2), we have that

Ym,T−1 − αm−iYi,T−1 = ξ′iXT−1 + ζ ′iET−1,

where

ξi = αm−i−1β1e
′
i + (αβ0 + β1)

m−1∑
j=i+1

αm−j−1e′j + β0e
′
m

= β0

m∑
j=i+1

αm−je′j + β1

m−1∑
j=i

αm−j−1e′j ,

and

ζi =
m∑

j=i+1

αm−je′j .

This leads to

mYT = αmmYT−1 + s′mΓ0XT +

(
s′mΓ1 +

m−1∑
i=1

αiξ′i

)
XT−1 + s′mΨET +

m−1∑
i=1

αiζ ′iET−1.

After rearrangement of terms, this can be written as

∆YT = (αm − 1)YT−1 +m−1s′mΓ0∆XT +m−1

(
s′m(Γ0 + Γ1) +

m−1∑
i=1

αiξ′i

)
XT−1

+m−1s′mΨET +m−1
m−1∑
i=1

αiζ ′iET−1,

11



with

m−1

(
s′m(Γ0 + Γ1) +

m−1∑
i=1

αiξ′i

)
XT−1 = β0XT−1 +m−1(αβ0 + β1)

m−1∑
i=1

m−i∑
j=1

αj−1

Xi,T−1

+m−1β1

 m∑
j=1

αj−1

Xm,T−1

+m−1β0

m−1∑
i=1

αi
m∑

j=i+1

αm−jXj,T−1

+m−1β1

m−1∑
i=1

αi
m−1∑
j=i

αm−j−1Xj,T−1

=

(
m−1∑
i=0

αi

)
(β0 + β1)XT−1

= δXT−1,

and with

m−1s′mΓ0∆XT = β0∆Xt + (αβ0 + β1)
1

m

m−1∑
i=1

m−i∑
j=1

αj−1

∆Xi,T

=
m∑
j=1

β0j∆Xj,T .

This leads to the required result (6), with UT = m−1s′mΨET +m−1
∑m−1

i=1 αiζ ′iET−1. Note that δ = 0

if α = 1 and β0 + β1 = 0; on the other hand, if |α| < 1, then

δ =
1− αm

1− α
(β0 + β1) = (1− αm)γ,

recalling the long-run parameter γ = (β0 + β1)/(1− α).

To obtain the MA(1) structure of UT , we use

m−1∑
i=1

αiζ ′i =
m−1∑
i=1

αi
m∑

j=i+1

αm−je′j =
m∑
i=2

 m−1∑
j=m−i+1

αj

 e′i,

to find

var(UT ) =
1

m2

m∑
i=1

m−i∑
j=0

αj

2

+
1

m2

m∑
i=2

 m−1∑
j=m−i+1

αj

2

,

cov(UT , UT−1) =
1

m2

m∑
i=2

m−i∑
j=0

αj

 m−1∑
j=m−i+1

αj

 ,

and hence

ρ = corr(UT , UT−1) =

∑m
i=2

(∑m−i
j=0 α

j
)(∑m−1

j=m−i+1 α
j
)

∑m
i=1

(∑m−i
j=0 α

j
)2

+
∑m

i=2

(∑m−1
j=m−i+1 α

j
)2 .
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The simplified expressions for ρ and β0i in case α = 1, β0 + β1 = 0 follow directly from the above

expressions. For the case |α| < 1, an alternative expression for ρ is

ρ =
α−mαm +mαm+2 − α2m+1

m− 2α−mα2 +mα2m + 2α2m+1 −mα2m+2
.

□

Proof of Proposition 2. The starting point is the assumed invariance principle:

1√
n

⌊un⌋∑
t=1

(
εt/σε

ηt/ση

)
d−→

(
W1(u)

W2(u)

)
=W (u), u ∈ [0, 1].

Recall that YT = m−1
∑m−1

i=0 ymT−i, and XT = m−1
∑m−1

i=0 xmT−i, T = 1, . . . , N = n/m. Given

that

XT = x0 +
1

m

m−1∑
i=0

mT−j∑
t=1

ηt = x0 +

mT∑
t=1

ηt −
m−2∑
i=0

(
m− 1− i

m

)
ηmT−i,

it follows that (for fixed m and as n→ ∞, hence N → ∞)

1√
nση

X⌊uN⌋ =
1√
nση

m⌊uN⌋∑
t=1

ηt + op(1)
d−→W2(u), (A.4)

and similarly, under H0,

1√
nσε

(Y⌊uN⌋ − β0X⌊uN⌋) =
1√
nσε

m⌊uN⌋∑
t=1

εt + op(1)
d−→W1(u). (A.5)

Consider the reparametrization (α, β0, β1) 7→ ψ = (α, δ, β0)
′, where δ = (β0+β1)

∑m−1
i=0 αi, such

that H0 can be formulated as H0 : α = 1, δ = 0. The LR statistic in the new parametrization is

LR = N log
minβ0

S(1, 0, β0)

minα,δ,β0
S(α, δ, β0)

,

where

S(α, δ, β0) =
1

N

N∑
T=1

(
∆YT − (αm − 1)YT−1 − δXT−1 −

∑m
i=1 β0i(α, δ, β0)∆Xi,T

1 + θ(α)L

)2

, (A.6)

with with θ(α) as implied by (8)–(9), and

β0i(α, δ, β0) =
1

m

(
β0α

m−i + δ

∑m−i−1
j=0 αj∑m−1
j=0 αj

)
.

To analyze the limiting null distribution, we require consistency of both the restricted estimator

ψ̃ = (1, 0, β̃0)
′ and the unrestricted estimator ψ̂ = (α̂, δ̂, β̂0), underH0. Because β0i(1, 0, β0) = β0/m,

such that
∑m

i=1 β0i(1, 0, β0)∆Xj,T = β0∆XT , it follows directly from (A.6) that β̃0 solves

∂S(1, 0, β̃0)

∂β0
= − 2

N

N∑
T=1

∆YT − β̃0∆XT

1 + θ(1)L
× ∆XT

1 + θ(1)L
= 0,
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where

θ(1) =
1−

√
1− 4ρ2

2ρ

∣∣∣∣∣
α=1

=
1−

√
1− 4(m2 − 1)2/(4m2 + 2)2

2(m2 − 1)/(4m2 + 2)

=
2m2 + 1−m

√
3m2 + 6

m2 − 1
.

Therefore, β̃0 is the OLS estimator in the regression (1+ θ(1)L)−1∆Yt = β0(1+ θ(1)L)
−1∆XT + ξT ,

and given that ξT is uncorrelated with the I(0) regressor, β̃0 is
√
N -consistent. For the unrestricted

estimator, we analyze the gradients

∂S(ψ)

∂α
=

2

N

N∑
T=1

ξT (ψ)× (1 + θ(α)L)−1

(
−mαm−1YT−1 −

m∑
i=1

∂β0i(α, δ, β0)

∂α
∆Xi,T

)

+
2

N

N∑
T=1

ξT (ψ)

(
∂(1 + θ(α)L)−1

∂α
UT (ψ)

)
, (A.7)

∂S(ψ)

∂δ
=

2

N

N∑
T=1

ξT (ψ)× (1 + θ(α)L)−1

(
−XT−1 −

m∑
i=1

∂β0i(α, δ, β0)

∂δ
∆Xi,T

)
, (A.8)

∂S(ψ)

∂β0
=

2

N

N∑
T=1

ξT (ψ)× (1 + θ(α)L)−1

(
−

m∑
i=1

∂β0i
∂β0

∆Xi,T

)
, (A.9)

where ξT (ψ) andUT (ψ) correspond to the functions (11)–(12) under the reparametrization (α, β0, β0) 7→
ψ. Using the fact that (1 + θL)−1 = 1 +

∑∞
i=1(−θ)iLi, it follows that ∂(1 + θ(α)L)−1/∂α is a power

series in the lag operator with a zero weight at lag zero. This implies that the term in the second line

of (A.7) has mean zero, when evaluated at the true value ψ0 = (1, 0, β00)
′ under H0. Similarly, because

ξT (ψ
0) has zero covariance with (1+θ(1)L)−1YT−1, (1+θ(1)L)−1XT−1 and (1+θ(1)L)−1∆Xi,T , it

follows that the gradients in (A.7)–(A.9), when evaluated in ψ0, have mean zero. Using the approach to

derive the asymptotics in non-linear cointegration models developed by Saikkonen (1995), this property

may be used to prove consistency of the unrestricted estimator ψ̂ (under a compactness assumption on

the parameter space).

As ψ̃ and ψ̂ are both consistent under H0, the usual equivalence of the LR, Wald and LM statistics

under H0, following from a quadratic approximation of the log-likelihood, will apply. In the presence

of different convergence rates for different parts of the parameter vector, as is the case in cointegration

models, this still applies, in particular because the null hypothesis only restricts the parameters α and δ,

which relate to coefficients of (non-cointegrated) I(1) regressors. In other words, the restrictions do not

combine parameters with different convergence rates. This leads to the following asymptotic expression

that is valid under H0:

LR =
N

2σ2ξ

∂S(ψ̃)

∂ψ′

(
∂2S(ψ0)

∂ψ∂ψ′

)−1
∂S(ψ̃)

∂ψ
+ op(1), (A.10)

where the scale factor N/(2σ2ξ) is due to the fact that −1
2N logS(ψ) is the concentrated log-likelihood

(up to an additive constant), after concentrating out σ2ξ , implying that the score vector is proportional to
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−1
2NS(ψ)

−1∂S(ψ)/∂ψ, and evaluation of S(ψ) in either ψ̃ or ψ0 gives a consistent estimator of σ2ξ
under H0.

The two non-zero elements of ∂S(ψ̃)/∂ψ satisfy

∂S(ψ̃)

∂α
= −2m

N

N∑
T=1

YT−1

1 + θ(1)L
× ∆YT − β0∆XT

1 + θ(1)L
+ op(1),

∂S(ψ̃)

∂δ
= − 2

N

N∑
T=1

XT−1

1 + θ(1)L
× ∆YT − β0∆XT

1 + θ(1)L
+ op(1),

where we have used the fact that the terms involving the I(1) regressors YT−1 and XT−1 dominate the

remainder terms involving I(0) regressors; and that

ξT (ψ̃) =
∆YT − β0∆XT

1 + θ(1)L
+ (β̃0 − β0)

∆XT

1 + θ(1)L
,

where the second term will be negligible in the limit expressions due to
√
N -consistency of β̃0.

Define the power series c(L) = (1 + θ(1)L)−1. From the asymptotic properties of statisics based

on linear processes, see Phillips and Solo (1992), we find that

1√
n
c(L)X⌊uN⌋ =

1√
n

⌊uN⌋∑
T=1

c(L)∆XT + op(1)

=
1√
n

⌊uN⌋∑
T=1

c(1)∆XT + op(1)

= c(1)
1√
n
X⌊uN⌋ + op(1)

d−→ σηc(1)W2(u),

see (A.4), and similarly

1√
n

⌊uN⌋∑
T=1

c(L)(∆YT − β0∆XT ) = c(1)
1√
n

⌊uN⌋∑
T=1

(∆YT − β0∆XT ) + op(1)
d−→ σεc(1)W1(u),

see (A.5). Via the continuous mapping theorem, and the known results on weak convergence to stochas-

tic integrals, this leads to

∂S(ψ̃)

∂α

d−→ −2σ2εc(1)
2m2

∫ 1

0

(
W1(u) + β0

ση
σε
W2(u)

)
dW1(u),

∂S(ψ̃)

∂δ

d−→ −2σεσηc(1)
2m

∫ 1

0
W2(u)dW1(u).

It can be checked from the MA(1) structure ofUT thatmc(1)2σ2ε = σ2ξ , which, together with the notation

b = ση/σε, may be used to simplify the right-hand side expressions:

∂S(ψ̃)

∂α

d−→ −2mσ2ξ

∫ 1

0
(W1(u) + β0bW2(u)) dW1(u),

∂S(ψ̃)

∂δ

d−→ −2bσ2ξ

∫ 1

0
W2(u)dW1(u).
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Similarly, we find for the elements of the Hessian matrix ∂2S(ψ0)/∂ψ∂ψ
′:

1

N

∂2S(ψ0)

∂α2

d−→ 2m2σ2ξ

∫ 1

0
(W1(u) + β0bW2(u))

2 du,

1

N

∂2S(ψ0)

∂δ2
d−→ 2b2σ2ξ

∫ 1

0
W2(u)

2du,

1

N

∂2S(ψ0)

∂α∂δ

d−→ 2bmσ2ξ

∫ 1

0
(W1(u) + β0bW2(u))W2(u)du.

Furthermore, the Hessian matrix will be asymptotically block-diagonal with respect to (α, δ) and β0.

Combining these results with (A.10), this leads, still under H0, to the required result:

LR
d−→

∫ 1

0
dW1(u)

(
m(W1(u) + β0bW2(u))

bW2(u)

)′

×

∫ 1

0

(
m(W1(u) + β0bW2(u))

bW2(u)

)(
m(W1(u) + β0bW2(u))

bW2(u)

)′

du

−1

×
∫ 1

0

(
m(W1(u) + β0bW2(u))

bW2(u)

)
dW1(u)

=

∫ 1

0
dW1(u)W (u)′

(∫ 1

0
W (u)W (u)′du

)−1 ∫ 1

0
W (u)dW1(u).

Under H1 : |α| < 1, we use the fact that

N−1LR = log
S(ψ̃)

S(ψ̂)
= log

σ̃2ξ

σ̂2ξ
.

From consistency of ψ̂ under H1 (which again can be proved using Saikkonen, 1995, given that the

unrestricted model is correctly specified), it follows that

σ̂2ξ =
1

N

T∑
t=1

ξ̂
2

T =
1

N

T∑
t=1

ξ2T + op(1)
p−→ σ2ξ .

Since the restricted estimator is based on a misspecified model, we have

σ̃2ξ =
1

N

T∑
t=1

(
∆YT − β∗0∆XT

1 + θ(1)L

)2

+ op(1)
p−→ var

(
∆YT − β∗0∆XT

1 + θ(1)L

)
> σ2ξ ,

where β∗0 is the pseudo-true value in the misspecified model. Therefore, with c = plim σ̃2ξ/σ
2
ξ > 1, we

have N−1LR
p−→ log c > 0, and hence LR = Op(1).

□
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