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Abstract

This paper approaches stabilisation policy and control theory in the cointegrated

Vector AutoRegressive (VAR) model from the perspective of an applied econometri-

cian. We show that the observables generated by the policy can be seen as driven

by a Vector AutoRegressive Moving-Average (VARMA) model, which can be given a

Structural VAR interpretation. This allows the econometrician to identify and assess

the policy. Exploring further the mechanisms involved in policy implementation, we

introduce a data-driven approach for classifying intermediate and final policy targets

within a model framework. The practicality and effectiveness of this procedure are

demonstrated through an analysis of New Zealand’s monetary policy data.
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1 Introduction

This paper explores control theory within the framework of a cointegrated vector autore-

gressive (CVAR) model, viewed from the standpoint of an econometrician aiming to conduct

counterfactual analysis or to assess ex post the presence and effectiveness of stabilisation

policies. This paper builds extensively on Johansen and Juselius (2001), hereafter referred

to as JJ.
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JJ pioneered a method for policy simulation analysis using a CVAR model, and numerous

empirical studies have applied this method to macroeconomic and financial time series data;

see Christensen and Nielsen (2009), Carlucci and Montaruli (2014), Boug et al. (2024),

and Castle and Kurita (2024), among others. In addition, Chevillon and Kurita (2024)

applied the method to climate data and conducted various counterfactual policy simulation

analyses, demonstrating the usefulness of CVAR-based policy analysis in the context of

climate econometrics. The articles by Johansen and Juselius in this issue present a revised

and extended version of their previous work, JJ, expounding the core concepts of their

method.

This papers aim to take the stance of the applied econometrician willing to assess policies

within the class considered by JJ. We can of course consider the counterfactual retroactive or

prospective implementation of a policy, which the articles mentioned above have done. But

here, we are asking whether the econometrician can estimate and assess the policy, after it has

been implemented. This implies considering what the observables are, and how to estimate

the parameters. Doing so, we find that the JJ setting as presented in their original paper

is not easy to reconcile with empirical analysis. In particular, we find issues determining

which is the observed data, and hence estimating the data generating process. Yet, with

the help of Rambachan and Shephard (2021), we identify a different interpretation of JJ’s

mathematical results. Here, we show the data, post policy implementation, can be seen as

generated by a vector autoregressive moving-average process, or a VARMA(p, 1) process,

which can be given an structural vector equilibrium correction (SVEC) interpretation where

the lagged MA(1) innovation constitutes the “policy” shock. This allows us to conclude that

the applied econometrician can ex post identify the policy.

This allows to go further, and explore more at depth the mechanisms presiding over the

control policy, with the intention of delineating how the authorities can put their policy in

place. For this we focus on the situation where they cannot directly control the target through

their instrument, but must rely on market forces through an intermediate target. This is

a situation studied by JJ. While their definitions of intermediate and final targets are clear

and unproblematic in theoretical contexts, challenges arise when these concepts are applied

empirically. Specifically, distinguishing between intermediate and final policy targets among

a set of candidate variables is complex in practice, particularly when analysing the time series

data of candidate variables in a multivariate CVAR system. Although insights from economic

theory are valuable, they are often insufficient to justify an a priori distinction in most cases.

One of the aims of this paper is to propose a procedure for identifying intermediate and final

policy targets in empirical contexts. An empirical illustration of the proposed procedure is

provided by modeling the macroeconomic time series data of New Zealand.

New Zealand was chosen for the following reasons: (i) New Zealand is a front-runner in

inflation targeting policy, being the first country to formally adopt the policy in the early
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1990s and is well-known for its successful implementation over the past three decades; and

(ii) the Reserve Bank of New Zealand (RBNZ) has published long-term time series data

on inflation expectations. While the suggested procedure can be applied to time series

from other economies, New Zealand’s data are particularly suitable for demonstrating the

usefulness of our procedure in the context of policy simulation analysis. For a preceding

empirical illustration of applying a cointegrated method to New Zealand’s time series data,

see Choo and Kurita (2016), inter alia.

The rest of this paper is organised into four sections. Section 2 briefly reviews control

theory within a CVAR system and then considers issues faced by econometricians working

with the data generated after a policy has been implemented. Section 3 addresses the issue

of identifying intermediate and final policy targets and considers an empirical procedure.

Section 4 provides an empirical illustration of the procedure. Finally, Section 5 presents

concluding remarks. All econometric analyses in this paper were conducted using Cats

(Doornik and Juselius, 2023), Ox (Doornik, 2023) and PcGive (Doornik and Hendry, 2023).

2 Inference in controlled cointegrated systems

This section revisits control theory within the context of a CVAR model through the perspec-

tive of the econometrician willing to estimate a model and perform counterfactual analysis.

We begin by reviewing JJ’s control theory and then discuss various methodological issues

related to counterfactual policy analysis using a CVAR system.

2.1 CVAR-based control theory

We start by providing a brief review of control theory in a CVAR model for I(1) non-

stationary time series data; for further details of the model, refer to Johansen (1988, 1996),

Juselius (2006) and Hunter et al. (2017). Let Xt be a p-dimensional vector of time se-

ries which is represented as the following trend-restricted CVAR(k) model conditional on

X−k+1, . . . , X0:

∆Xt = α (β′, ρ)

(
Xt−1

t

)
+

k−1∑
i=1

Γi∆Xt−i + τ + εt, for t = 1, ..., T, (1)

where εt is a martingale-difference sequence with a positive definite variance matrix Ω ∈
Rp×p, a process satisfying a class of assumptions provided by Kurita and Nielsen (2019).

The parameters of (1) are defined as α, β ∈ Rp×r for r < p, Γi ∈ Rp×p, ρ ∈ Rr and

τ ∈ Rp. The parameters α (adjustment or loading vectors) and β (cointegrating vectors)

are assumed to be of full rank r (the cointegration rank). Let their orthogonal complements

α⊥, β⊥ ∈ Rp×(p−r) of full rank p − r, so that the equality α′
⊥α = β′

⊥β = 0 holds along with
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the non-singularity of the two matrices (α, α⊥) and (β, β⊥). In order to justify I(1) CVAR

analysis rather than I(2) or higher order degrees of integration, we assume that α′
⊥Γβ⊥ is

of full rank p − r for Γ = Ip −
∑k−1

i=1 Γi. In the development of control theory in the next

subsection, it is also essential to introduce here C = β⊥(α
′
⊥Γβ⊥)

−1α′
⊥, known as the impact

matrix in the Granger-Johansen representation.

The control theory developed by JJ considers a policy aiming at stabilising a subset of

the system variables, or a linear combination thereof, so they become stationary around

a specified mean. We simplify here the model (1) into a constant-restricted model with

k = 1 to make the required argument straightforward (but prove our results in the general

case in the Appendix):

∆Xt = α(β′Xt−1 − µ) + εt, for t = 1, ..., T, (2)

for µ ∈ Rr. Equation (2) provides a basis for a review of the theory.

We now introduce two policy matrices a, b ∈ Rp×m for m + r < p. The matrix a is

associated with the selection of policy instruments, a′Xt, while the matrix b pertains to the

selection of policy targets, b′Xt. The aim of economic policy is to stabilise b′Xt using a′Xt,

which means making b′Xt stationary with mean b∗, the policy target level, through the use

of a′Xt. Achieving this requires a t-timed contemporaneous policy intervention, represented

by κ′Xt − κ∗ for κ ∈ Rp×m and κ∗ ∈ Rm. Policy implementation replaces Xt with Xctr
t ,

dubbed the ‘controlled process’, which is defined as

Xctr
t = Xt + a (κ′Xt − κ∗) , (3)

for a = a(a′a)−1.

Given Xctr
t , assuming market dynamics are not modified by the intervention, equation

(2) generates a new series Xnew
t , with the requirement that b′Xnew

t is stationary with mean

b∗. The overall process is hence two-staged, so that from a policy inception at date t0, and

letting ν : x → a (κ′x− κ∗) ,

Xt0 → Xctr
t0

= Xt0 + ν (Xt0)︸ ︷︷ ︸
(Policy)

→ Xnew
t0+1 = (Ip + αβ′)Xctr

t0
− α′µ+ εt0+1︸ ︷︷ ︸

(Ecosystem)

→ Xctr
t0+1 = Xnew

t0+1 + ν (Xt0+1)︸ ︷︷ ︸
(Policy)

→ ....

To determine the parameters of the policy rule that achieve stabilisation, we see that equation

(2) implies that the long run response of the system satisfies

X∞ ≡ lim
h→∞

E(Xt0+h |Xt0 ) = CXt0 + α(β′α)−1µ.

The response of the economic process to the policy introduction is therefore, in the directions

defined by the policy target b, lim
h→∞

E
(
b′Xnew

t0+h

∣∣Xctr
t0

)
= b′

{
C
[
Xctr

t0

]
+ α(β′α)−1µ

}
. Hence
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b′Xnew
t having been stationarised by the intervention around b∗ means that, in terms of the

original variable,

b∗ = b′
{
C [Xt + a (κ′Xt − κ∗)] + α(β′α)−1µ

}
.

Hence, if det(b′Ca) ̸= 0 is satisfied, the policy rule satisfies

κ′Xt − κ∗ = −(b′Ca)−1
[
b′CXt − b∗ + b′α(β′α)−1µ)

]
,

so that κ′ = −(b′Ca)−1b′C and κ∗ = −(b′Ca)−1 [b∗ − b′α(β′α)−1µ)] are the solutions. We

thus refer to det(b′Ca) ̸= 0 as the controllability condition hereafter.

The identity C = Ip − α (β′α)−1 β′ then leads to the following important equation

κ′Xt − κ∗ = (b′Ca)−1
[
b′α(β′α)−1(β′Xt − µ)− (b′Xt − b∗)

]
, (4)

i.e., the policy rule constitutes of weighted average of two forms of disequilibria, given re-

spectively by β′Xt −µ, a vector of deviations from the long-run relationships, and b′Xt − b∗,

the discrepancy between the actual and desired targets.

As the policy needs to be implemented every period, Xctr
t = Xnew

t + a (κ′Xnew
t − κ∗) for

all t > t0 and JJ derive the corresponding new dynamics:

∆Xnew
t+1 = [α, (Ip + αβ′) a]

[
β′Xnew

t − µ

κ′Xnew
t − κ0

]
+ εt+1. (5)

The new system is characterised by an additional cointegration relation corresponding to

the implemented policy.

2.2 The Econometrician’s problem

We now consider JJ’s analysis from the perspective of the econometrician who aims to

identify the policy and derive a counterfactual analysis. We analyse in turn the elements

this econometrician must consider.

2.2.1 Timing and Observables

The principle of JJ’s approach to policy is that the control rule is applied at each point in

time, thus generating two new processes (Xnew
t , Xctr

t ) which accord to a specific timing. Let

us stress it again as it is important for our discussion.

1. At the beginning of period t, the authority observes the process that is generated by

market forces. We denote it by Xnew
t for simplicity (at t = t0, we let Xnew

t0
= Xt0).

The authority then chooses an intervention ν (·) that modifies Xnew
t and generates the

controlled process.

Xctr
t = Xnew

t + ν (Xnew
t ) . (6)
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2. The market at time t + 1 generates the next value Xnew
t+1 of the process according to

(6),

Xnew
t+1 = (Ip + αβ′)Xctr

t − α′µ+ εt+1. (7)

3. The authority intervenes again and sets Xctr
t+1 = Xnew

t+1 + a
(
κ′Xnew

t+1 − κ0

)
, and so on.

In JJ’s framework, the intervention is contemporaneous so Xnew
t is immediately trans-

formed into Xctr
t , and this is the process that market forces then work with to generate

the next period’s observations. Given that the policy is implemented every period (between

inception and termination), the process observed by the econometrician must be Xctr
t+1. The

‘new’ process Xnew
t+1 corresponds to a latent state, as it is immediately transformed by the

authority and never actually holds.

An alternative timing for decisions is possible, which may render both processes observ-

ables. This would require introducing subperiods at t, so for instance if we think of Federal

fund rates as policy instruments, then markets and the econometrician observe Xnew
t at the

beginning of the period (a month or a quarter), the decision/intervention is then made at

the FOMC meeting during the period, this is when Xctr
t is generated and becomes the new

value for the whole vector of t-timed observables. Next period’s outcome becomes available

in its first half, Xnew
t+1 then Xctr

t+1 later in the period. An issue with this interpretation is that

Xnew
t and Xctr

t correspond to the same set of variables, so that if the Federal Funds rate is

part of Xnew
t , the observed value is contingent on the policy that is being followed, it cannot

be set both by markets and authorities at once, or we are really dealing with two distinct

concepts that must be represented by two different variables. The only solution would be to

assume that the policy instrument is only set by the authority, so Ω, the variance-covariance

of εt is singular, with zero variance in the direction of a, i.e., in model (1):

V ar (a′εt) = 0.

In the example of the Federal Funds rate, the variance of their innovations must then be

zero.

This alternative timing does not correspond to the system’s assumptions, absent the

policy, so it cannot hold. It follows that the process that is observable by the econometrician

should a priori be Xctr
t , and that Xnew

t should be latent.

2.2.2 What’s wrong with the controlled process?

Let us entertain the consequences of the discussion above, where the policy generates a

unique set of observables, Xctr
t . While the theory has established that Xnew

t exhibits an

increased rank of cointegration, as in expression (5), and that b′Xnew
t is stationary about b∗,

the dynamics of Xctr
t is atypical. Indeed, the natural control rule derived by JJ is such that
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κ′α = 0, and, Im + κ′a = 0. Notice in this case that, contrary to the latent Xnew
t , whose

rank of cointegration is r +m, the observable Xctr
t maintains a cointegration rank equal to

r, with modified reduced-form errors:

∆Xctr
t+1 = α

(
β′Xctr

t − µ
)
+ (Ip + aκ′) εt+1, (8)

which is compatible with

κ′xctr
t+1 = κ0. (9)

Thus, in terms of the controlled variable Xctr
t , the cointegration properties are not altered

compared to the process without control. Yet, the innovations to Xctr
t+1 in (8) also exhibit a

singular variance-covariance as

det
[
(Ip + aκ′) Ω (Ip + aκ′)

′]
= 0, (10)

see the proof in the Appendix. This reduced rank of the variance-covariance of the innova-

tions implies that the controlled process exhibits peculiar dynamics. This is clear from the

control policy which ensures that at all times

b′
[
CXctr

t + α (β′α)
−1

µ
]
= b∗,

i.e. a linear combination of Xctr
t remains constant at every period. Rewriting the above, we

see that

b′Xctr
t − b∗ = b′α (β′α)

−1 (
β′Xctr

t − µ
)
.

Hence β′Xctr
t − µ ∼ I (0) implies that b′Xctr

t − b∗ ∼ I (0) and the two are collinear. The

increased rank of cointegration in Xnew
t is only implicitly present in Xctr

t since the second

cointegration relation is directly proportional to the first, for this process. The reduced rank

of the covariance of the innovation for Xctr
t implies that, when this is the observable process,

cointegration analysis will lead misleading results for the econometrician as we show next by

simulation.

2.3 Monte Carlo evidence

We now document the extent to which degenerate dynamics for Xctr
t impair inference on the

cointegrating rank, and hence on the policy evidence. For this we consider the situation where

an authority implements a univariate policy (m = 1). To presence some plausibility of policy

control, we assume the parameters of the CVAR are estimated (all ranks and dimensions are

known, including the directions of α and β) when forming the policy. We then consider the

evidence the econometricians obtain on the rank of cointegration for the original, controlled

and new processes. Throughout we let the data generation process (DGP) follow a CVAR(1)

but modify system dimensions and cointegration ranks. See the Appendix for further details
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Figure 1: Panels (a)-(c): Rejection frequencies, at the 5% nominal level, of the Trace test

of a cointegration rank r in a 3-variate system as a function of the sample size (horizontal

axis). Each panel corresponds to a different hypothesized value of r when the truth if 1 for

the original data, and 2 for the new data. Distributions are obtained by simulation over

10,000 replications. Panel (d) on the bottom right presents one realization of the processes

over a sample of dimension 1000.

of DGPs employed in the Monte Carlo simulation. Using 10,000 Monte Carlo replications

we first report the rejection frequencies of the null of a given rank r of cointegration, using

the usual cointegration trace statistics at a nominal size of 5%.

Figure 1 records such rejection frequencies for a range of null hypotheses about a three-

variate system. In the data generating process, the rank of cointegration is r = 1 for Xt

(denoted Original, in the figure), and r = 2 for Xnew
t (New, in the figure). Over moderate

samples of sizes greater than 200 observations, rejection frequencies are close to the nominal

values under the null (r ≤ 1 for Xt and r ≤ 2 for Xnew
t ). The power is also high over the

same sample size. By contrast, we observe massive distortions about Xctr
t (Control, in the

figure). Because of innovation variance rank degeneracy, the test statistic rejects on average

50% of the time for the null of 1 cointegrating relation, and 2 to 3% for the null r ≤ 2.

Treating the “controlled process” as the “new” to test for the presence of an increased rank

of cointegration would therefore be misleading, with low power at r ≤ 1 and conservative

size at r ≤ 2. Testing the correct null that r ≤ 1 would lead to massive overrejection, owing

to the singular innovation covariance matrix. To explore the issues further, we consider in

Figure 2 the situation of an initial rank of cointegration r = 2 so the policy renders all
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Figure 2: Panels (a)-(c): Rejection frequencies, at the 5% nominal level, of the Trace test

of a cointegration rank r in a 3-variate system as a function of the sample size (horizontal

axis). Each panel corresponds to a different hypothesized value of r when the truth if 2 for

the original data, and 3 for the new data. Distributions are obtained by simulation over

10,000 replications. Panel (d) on the bottom right presents one realization of the processes

over a sample of dimension 1000.

processes stationary. In this situation, inference on the controlled process is more similar to

that of the new process, except that the probability not to reject r = 2 is higher by about

15%. In both figures, the bottom right panel presents κ′Xnew
t and κ′Xctr

t (for typographic

reason κ is denoted κ) and we see that the former is stationary and the latter constant.

Given that inference on the rank of cointegration follows a sequential testing procedure,

we complement the previous results by a simulation where we record the frequency with which

a specific rank of cointegration r0 is selected, such that the procedure rejects r = 0, ..., r0− 1

and does not reject r0 at the 5% nominal size (if r0 < p or this latter null is not tested). These

results are presented in Figure 3 for the two DGPs considered previously, with r = 1 and 2.

The figure shows, on the left hand side where (p, r) = (3, 1) , that for the original and new

processes, the selection procedure achieves rates close to 95% of the correct cointegration

rank. Yet for the Controlled process, this rate is about 50% for both r0 = 1 or 2. On the

right-hand side panels, where (p, r) = (3, 2) we see that the procedures works well for the

original process and for the new process. The controlled version selects r = 3 with a higher

frequency than that of selecting r = 2 on the left column, but still less so than the new

process.
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Figure 3: Probability to select a specific rank of cointegration using the sequential testing

procedure based on the Trace test at the 5% asymptotic nominal size. Each row corresponds

to the selection of a different rank r. The cointegration rank of the original data is 1 in the

left colum, 2 in the right column. Horizontal axes record the sample size.

In order to shed more light on the reasons for the results above, Figure 4 records the

distribution of the estimators of test statistics over a sample of T = 1, 000 observations,

together with that under the limiting distribution under the null. We used 10,000 Monte

Carlo replications to simulate distributions. We report only the situation (p, r) = (3, 1) but

similar results hold for other values. We see that the difference between inference on the new

and controlled processes lies essentially in that, while the Trace statistic for the null r ≤ 1

rejects strongly for the new process, it is, for its controlled counterpart, correctly centered

on the limiting distribution but with very large variability caused by the innovation variance

singularity. This explains the high rejection rate we established before.

We present in the Appendix similar results for different parameter settings but with

the same number of observations and replications. All of these results indicate that infer-

ence based on the controlled process is unreliable. This may seem to pose a problem for

econometricians who wish to perform inference in the policy setting considered above.

2.4 A new understanding

Fortunately, while the previous analysis may imply that policy in the JJ framework will be

difficult to assess empirically, we believe that it can be put to the data. Indeed, we find that
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Figure 4: Distribution of cointegration test statistics (each row denotes a different null for

r) at a sample of T = 1, 000 observations in a 3-variate setting. The left column corresponds

to the original data, the central one to the new data, and the column on the right to the

controlled data.

we can avoid dealing with the controlled data. Our approach relies on a reinterpretation of

the policy, in light of recent research on the topic.

The route we follow consists of a reinterpretation of the timing of the policy, using a

framework delineated by Rambachan and Shephard (2021) and we borrow their explanations.

In their approach to policy, at each period t ≥ 1, the unobserved unit Xt receives a random

assignment Wt and we observe an outcome Xnew
t (Wt) . The “potential outcome” process at

time t, for any deterministic sequence {ws} , is Xnew
t

(
{ws}s≥1

)
. Under the assumption of

Non-anticipating Potential Outcomes, for each t ≥ 1 and all deterministic sequences {wt}t≥1 ,

{w′
t}t≥1 , the potential outcomes do not depend on future realisations:

Xnew
t

(
w1:t, {ws}s≥t+1

) a.s.
= Xnew

t

(
w1:t, {w′

s}s≥t+1

)
.

Rambachan and Shephard make the link with the macroeconomic literature on impulse

response functions (IRF), defined in the context of Structural VARs as (Sims et al., 1982)

for h ≥ 1 as

IRFk,t,h (wk, w
′
k) ≡ E [Yt+h (Wk,t)|Wk,t = wk]− E [Yt+h (Wk,t)|Wk,t = w′

k] .

Rambachan and Shephard (2021) show that the IRF can be given a causal meaning, coincid-

ing with the Average Treatment Effect E [Yt+h (wk)− Yt+h (w
′
k)] under some orthogonality
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conditions that are satisfied when the assignment constitutes a “shock”, which they define

as satisfying Wk,t ⊥
(
W1:t−1,Wk′,t,Wt+1:t+h,

{
Xnew

t+h (w1:t+h)
})

. From their definitions, the

assignment Wt corresponding to the control policy is zero when the data generating process

for Xnew
t coincides with that of Xt. We can therefore define the assignment as the control in

JJ:

Wt+1 = πν (Xnew
t ) . (11)

for some matrix π to be defined. In our context where the policy is implemented at every

period, Rambachan and Shephard (2021) define the impulse causal effect at horizon h ≥ 1 as

the difference between Xnew
t+h and the counterfactual X∗new

t+h that obtains with the only change

that the policy is not implemented at time t (so W ∗
t = πν

(
X∗

t−1

)
= 0 under the counterfac-

tual and this is the only difference in assignments between Xnew
t+h and X∗new

t+h ). In their words,

the impulse causal effect measures the ceteris paribus causal effect – of intervening to switch

the time-t assignment from 0 to Wt – on the h-period ahead outcomes, holding all else fixed

along the assignment process. Since Xt is non-stationary in JJ, the impulse causal effect and

its unconditional expectation, the Average Treatment Effect, vary with time. Yet, we notice

that the policy intervention, Wt+1 in (11) does not constitute a contemporaneous “shock”

in the Ramey (2016) or Rambachan and Shephard (2021, Theorem 2) sense, since Wt+1 is

not unanticipated from, or uncorrelated with, lagged endogenous variables, in fact it is pos-

sibly persistent (though stationary under the assumption of controllability). In practice, JJ,

Theorem 7, show there exists a linear policy rule which ensures that Wt+1 can be expressed

as a function of the lagged shocks to the unperturbed system and can be made iid. In the

context of the VAR(1) , following on the implementation of the policy, the data generating

process writes

Xnew
t+1 = − [αµ+ (Ip + αβ′) aκ0] + (Ip + αβ′) (Ip + aκ′)Xnew

t + εt+1 (12)

so κ′Xnew
t+1 = −κ′αµ+κ′ (Ip + αβ′) [(Ip + aκ′)Xnew

t − aκ0]+κ′εt+1. Under policy assumptions

κ′α = 0 and Im + κ′a = 0. The previous expression then simplifies as

κ′Xnew
t+1 = κ′ [(Ip + aκ′)Xnew

t − aκ0] + κ′εt+1 = κ0 + κ′εt+1

i.e., setting π = (Ip + αβ′) , we obtain Wt+1 = πν (Xnew
t ) = (Ip + αβ′) aκ′εt.

Hence, the data generating process under the new policy – the process for the potential

outcome – becomes

∆Xnew
t+1 = α (β′Xnew

t − µ) + (Ip + αβ′) aκ′εt + εt+1, (13)

= α (β′Xnew
t − µ) +Wt+1 + εt+1

a vector autoregressive moving-average model, or a VARMA(1, 1) model. Using the results

in Theorem 8 of JJ, we can show the same result for a VAR(k) model that becomes a
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VARMA(k, 1) model under the policy. Hence, since εt ⊥ εt+1 holds, an alternative structural

vector error (or equilibrium) correction (SVEC) representation is feasible

∆Xnew
t+1 = α (β′Xnew

t − µ) +Bεt+1 (14)

where εt+1 =
(
ε′t+1, ε

′
t

)′
and B conforms with (13). In equation (14), εt+1 contains an excess

shock that is a priori recoverable from past observations (Chahrour and Jurado, 2022).

The analysis above shows that we can reinterpret the timing of the JJ framework through

a standard SVEC (14): the authority does not exert a control at time t that modifies Xt

into Xctr
t . Instead, it observes Xt and introduces a direct shock to the system at time t+ 1

that relates to the observables at t. The intervention adds a shock Wt+1 to the system that,

as it does not correlate with εt+1, does not render the variance of the innovations singular.

Under the random assignment narrative, it is conceivable that the observed process should

be Xnew
t so under this interpretation, we avoid considering the controlled process as the only

observable. In fact, it is not defined here. Yet the question remains of how the authorities

manages to introduce this new shock to the system, a shock that shifts Xnew
t+1 without con-

trolling it perfectly (as opposed to Xctr
t in JJ). Intuitively, the natural route to achieving

such a result relies on considering that the authority uses a primary tool that differs from

the observable – partially controlled – policy instrument.

This setting is actually considered explicitly by JJ and we explore it further from the

econometrician’s perspective as a natural way to treat the issue of observables in the con-

trolled VAR system. A key element in our discussion relies on equation (14), through which

we see that we can retrieve empirically, through the VARMA structure the original (α, β)

parameters (see Funovits, 2024), so the econometrician can ex post (that is, post policy

implementation) perform the analysis that the policy maker does ex ante.

3 Policy with intermediate targets

In this section, we explore controlled policy further, with the intention of delineating how

the authorities can put their policy in place. For this we focus on the situation where they

cannot directly control the target through their instrument, but must rely on market forces

through an intermediate target. This was considered in JJ but we show here how the applied

econometrician can assess, and identify these targets. The choice of final and intermediate

policy target variables as a problem encountered both by the policy maker, and then by

the econometrician analysing time series data. We restrict ourselves to m = 1 to render

the argument tractable i.e., there is a singular policy target along with a singular policy

instrument in the CVAR system. If the final target is recognised as b′Xt, the intermediate

target is then stated as follows, according to JJ:
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Definition 3.1 The intermediate target variable c′Xt for c ∈ Rp is a variable which is

cointegrated with the final target variables b′Xt, so that there exists a stationary relationship

b′Xt + ϕc′Xt for ϕ ̸= 0.

Applied economists usually find it possible to determine known vectors b and c along

with a, guided by some prior knowledge on conceivable transmission mechanisms of economic

policy. It is indeed straightforward to fix a, or to choose an instrument variable, on the basis

of a policy tool available to monetary and fiscal authorities. However, selecting b and c in the

context of an empirical study is considered more challenging, as either b′Xt or c
′Xt may serve

as final or intermediate targets. While insights from economic theory alone are generally

insufficient to justify the selection process, a data-driven procedure becomes essential. The

following subsections will discuss this approach in detail.

3.1 Identifying targets

Let us first consider a procedure for the empirical identification of the two types of policy

targets. For this, we see that Definition 3.1 requires there exists j ≤ r such that

sp (βj) ⊂ sp (b+ ϕc) for ϕ ̸= 0,

where sp (·) denotes the vector space spanned by · and βj is one of the cointegrating vectors

in β = (β1,..., βr). We then introduce below our definition of a purely-final policy target

variable on the basis of the selection vector b.

Definition 3.2 Suppose sp (βj) ⊂ sp (b+ ϕc) holds with ϕ ̸= 0 , along with b = ej, where

ej denotes the j-th column vector of Ip subject to j ≤ r. The selected variable b′Xt is then

defined as a purely-final policy target if it cannot act as a policy instrument for any other

variables in the CVAR system, that is Cb = 0, and it reacts only to the cointegrating rela-

tionship β′
jXt−1 among β′Xt−1 in the CVAR system.

As an example, if p = 4, r = 2 and j = 1, it then follows that b = (1, 0, 0, 0) and

C =


0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗

 ,

so that Cb = 0, thereby allowing us to regard b′Xt as not acting as a policy instrument for

any other variables in the system. The zero column in the C matrix is guaranteed if

α = (α1, α2) =


ξ ∗
0 ∗
0 ∗
0 ∗
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for a non-zero scalar parameter ξ, since

sp (α1) ⊂ sp (b)

is implied by the condition Cb = β⊥(α
′
⊥Γβ⊥)

−1α′
⊥b = 0. Given this, an intermediate policy

target cXt needs to be incapable of playing the role of a purely-final policy target, so that

sp (α1) ̸⊂ sp (c)

should also be ensured.

We summarise the arguments above in a proposition, assuming that the policy only

considers controls as unique variables, not linear combinations thereof.

Proposition 3.3 Suppose a = ei, b = ej and c = ek for i ̸= j ̸= k, j ≤ r and i, k ≤ p,

and the controllability condition c′Ca ̸= 0 holds. The selected variable b′Xt is identified as

the purely-final policy target while c′Xt as the intermediate policy target if the following three

conditions are satisfied:

1. sp (βj) ⊂ sp (b+ ϕc) for ϕ ̸= 0,

2. sp (αj) ⊂ sp (b) ,

3. sp (αj) ̸⊂ sp (c) .

All the conditions here are empirically testable, so that we can treat this proposition

as a pre-procedure for CVAR-based policy simulation exercises involving both intermediate

and final policy targets. Section 4 below provides an empirical illustration of the procedure

based on the proposition above.

As a corollary to this proposition, we present the following result:

Corollary 3.4 Under the conditions of Proposition 3.3, the two vectors b′C and c′C are

collinear, along with b′Cb = c′Cb = 0.

Proof. See the Appendix.

This corollary has two interesting implications. First, it implies that c′Ca ̸= 0 means

b′Ca ̸= 0 and vice versa, as indicated by JJ. Second, it can facilitate a SVEC-type analysis.

In order to explain this second aspect, let us provide the Granger-Johansen representation

in the context of the simplified model (2):

Xt = C
t∑

j=1

εi +
∞∑
j=1

C∗
i εt−i + CX0 − α (β′α)µ,
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where
∑∞

j=1C
∗
i εt−i represents a linear process with the matrices C∗

i decreasing exponentially

fast. For the purpose of considering its structural interpretation in the context of SVEC

formulation, we introduce a non-singular matrix G so that we can define ut = Gεt for

GΩG′ = Ip and find

Xt = C̃

t∑
j=1

ui +
∞∑
j=1

C̃∗
i ut−i + CX0 − α (β′α)µ,

for C̃ = CG−1 and C̃∗
i = C∗

i G
−1. See Juselius (2006, Ch.15) inter alia, for further details

of this type of formulation. The parameter C̃ represents the long-run impact matrix in this

context and needs to be restricted to claim its structural interpretation. If we continue to

use the example p = 4, r = 2 and j = 1, the corollary implies, as a result of matrix rotation,

C̃ =


0 −ϕc22 −ϕc23 −ϕc24

0 c22 c23 c24

0 ∗ ∗ ∗
0 ∗ ∗ ∗

G−1

=


0 0 0 0

0 c22 c23 c24

0 ∗ ∗ ∗
0 ∗ ∗ ∗

 G̃−1 (15)

where G̃−1 = N−1G−1 for

N =

(
1 ϕ 0 0

03×1 I3

)
.

The presence of a zero row in (15) indicates that we can formulate a SVEC model in such a

way that it is only the intermediate target that is influenced by a series of long-run structural

shocks (permanent shocks), not the final target, and vice versa. This is a reflection of the

long-run synchronisation of b′Xt and c′Xt. The collinear structure reduces the parameters of

C̃ and will be useful for its identification in the SVEC context.

3.2 New process in the classification of policy targets

The arguments presented in the above subsection imply that the derived new system can be

re-expressed in a way that reveals the underlying structure resulting from the implementation

of economic policy. The expression of the new system is provided in the next proposition,

which is based on the simplified CVAR model (2) for the sake of simplicity.

Proposition 3.5 Suppose that all the conditions in Proposition 3.3 are satisfied, so that

b′Xt and c′Xt are identified as the purely-final policy target and the intermediate policy target,
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respectively. The system for Xnew
t is then expressed as

∆Xnew
t+1 = α◦ [(b, c, δ)′ Xnew

t − µ◦]+ εt+1, for t = k + 1, ..., T, (16)

where (b, c, δ) ∈ Rp×(r+1) represents a set of cointegrating vectors derived from the rotation

of (κ, β) such that

(b, c, δ)′ Xnew
t − µ◦ ∼ I (0)

and

sp (δ) ⊂ sp (g⊥)

for g = (b, c), along with a set of adjustment vectors α◦ and constants µ◦ derived from

(a+ αβ′a, α) and (κ∗′, µ)′ respectively, as a result of the rotation of (κ, β).

Proof. See the Appendix.

The derived system (16) explicitly shows that the selection vectors b and c are members

of the cointegrating vectors for Xnew
t , while the remaining cointegrating vectors consist of δ,

which is orthogonal to b and c as a consequence of matrix rotation given b and c. The vectors

δ′Xnew
t are likely to contain the policy instrument a′Xnew

t as its constituent. This implies

that the orthogonality of δ with respect to b and c can be interpreted as a representation of

the Xnew
t -based CVAR structure resulting from policy implementation in a counterfactual

world. In other words, the cointegrating space for the original process is spanned by

β = [(b+ ϕc)ω, β2] ∈ Rp×r,

for a scalar ω, and this space is expanded to

β◦ ≡ (b, c, δ) ∈ Rp×(r+1)

for the new process, indicating that more stability has been attained in β◦ as result of

the implementation of the policy in a counterfactual scenario. In the new process, not only

b′Xnew
t but also c′Xnew

t is individually a stationary series, while δ′Xnew
t , presumably including

a′Xnew
t as its constituent, is now seen as having no interactions with the two stationary series

as a result of policy implementation. The cointegrating vectors for the new system will be

estimated in the empirical illustration below to confirm the argument presented in this

subsection.

It is also possible to re-express (16) within the context of the SVEC-based reinterpretation

developed in Section 2.4. Recalling the identity C = Ip − α (β′α)−1 β′, along with the

structure of β = [(b+ ϕc)ω, β2] , we can manipulate κ′ to yield

κ′ = −(b′Ca)−1b′C = ζb′ + ϑϕc′ + ϑβ′
2,
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where ϑ = (b′Ca)−1b′α (β′α)−1 ω, and ζ = −(b′Ca)−1 + ϑ. The SVEC representation is

∆Xnew
t+1 = α (β′Xnew

t − µ) +Bεt+1, (17)

where B is now given as

B =
[
Ip, (Ip + αβ′) a (ζ, ϑϕ, ϑ) (b, c, β2)

′] ,
so that we can interpret the random assignment Wt+1 = (Ip + αβ′) a (ζ, ϑϕ, ϑ) (b, c, β2)

′ εt as

being partially driven by deviations from intermediate as well as final target values.

4 Empirical application

In this section we provide an empirical application of the above propositions to a series of

macroeconomic data of New Zealand. We begin by examining the cointegrating rank of an

empirical VAR system and then applies the suggested procedure to the data to distinguish

between intermediate and final policy targets in the context of inflation targeting. We also

conduct policy simulation exercises using the empirical CVAR system.

4.1 Cointegrated VAR

We start with the estimation of an unrestricted VAR model for Xt consisting of New

Zealand’s quarterly macroeconomic series:

Xt = (πt, π
e
t , yt, it)

′ ,

where πt is a realised annual (year-on-year) inflation rate, πe
t is a survey-based annual in-

flation expectation, yt is the log of real output, it is the short-term interest rate. Further

details of the data are provided in the Appendix. The estimation period spans from the

third quarter of 1992 to the first quarter of 2020, encompassing a total of 111 observations.

The endpoint was chosen to account for the significant impact of the COVID-19 pandemic

on New Zealand’s economy beginning in 2020 and continuing thereafter. Figure 5 presents

an overview of the data for the four variables. All the series appear to be non-stationary;

notably, πt and πe
t have exhibited synchronised movements, accompanied by a clear upward

trend in yt. We thus deem it suitable to employ a trend-restricted I(1) CVAR method for

the analysis of the data.

According to a preliminary regression analysis some of the lagged dynamic terms at

k = 4 are judged to be fairly significant, resulting in the selection of a VAR(4) model for

further study. Figure 6 displays a battery of diagnostic graphs calculated from the esti-

mated VAR(4) model: scaled residuals (the first column), residual autocorrelation functions
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Figure 5: An overview of the data

Table 1: Inference on the cointegrating rank for Xt.

r = 0 r ≤ 1 r ≤ 2 r ≤ 3

log LR 84.738[0.000]∗∗ 45.168[0.027]∗ 21.292[0.169] 6.815[0.375]

Note. Figures in square brackets are p-values.
∗∗ and ∗ denote significance at the 1% and the 5% level, respectively.

(ACF, the second column) and residual quantile-quantile plots against normality (QQ plot,

the third column). The residuals appear to be free from serial correlations, providing evi-

dence in support of a quasi likelihood-based analysis of cointegration studied by Kurita and

Nielsen (2019). The cointegration literature also shows that trace tests for the selection of

cointegrating rank are robust to non-normality in the innovation term; see Cheung and Lai

(1993), inter alia, for further details. The evidence recorded in the figure thus justifies using

the VAR(4) model as a basis for exploring the underlying cointegrating rank.

Table 1 reports a class of trace test statistics for the choice of r, logLR(r|p) for r = 0, ..., 3

given p = 4. The series of tests are in support of r = 2 at the 5% level, so we select this

value as the retained cointegration rank. We then proceed to applying the procedure based

on Proposition 3.3, for which we recall that likelihood ratio tests for restrictions on α and β

have asymptotic χ2 distributions, given the selection of cointegrating rank (see Johansen,

1996, Chs. 7 and 8 for further details).
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Figure 6: Residual diagnostics

4.2 Classifying the policy targets

The hypothetical long-run structure we envision is as follows: (i) expected inflation serves

as the intermediate target while actual inflation is the final target, resulting in the long-

run synchronisation of the two inflation rates, and (ii) expected inflation is driven by the

output gap and interest rate, leading to a long-run Phillips curve formulation. Given this

hypothetical structure as well as the selection of the interest rate as an instrument variable,

we conceive the specification of a = (0, 0, 0, 1)′ , b = (1, 0, 0, 0)′ , c = (0, 1, 0, 0)′ and ϕ = −1;

that is, a′Xt = it, b′Xt = πt, c′Xt = πe
t and (b − c)Xt = πt − πe

t . The parameter ϕ can be

estimated in the CVAR framework but it seems natural to preset ϕ = −1 as a hypothesis,

suggesting a presumed synchronisation of πt and πe
t . This specification then allows us to

test for the validity of the three hypotheses given in Proposition 3.3, according to which we

should fail to reject the first two and reject the third. The first hypothesis to be tested under

the above specification is

H
(1)
0 : sp (β1) ⊂ sp (b− c) . (18)

In order to identify the cointegrating space, we have also introduced a normalisation scheme

for the second cointegrating vector (0 and 1 for the first and the second element, respectively),
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arriving at the following estimates:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.449
(0.097)

−0.152
(0.101)

0.013
(0.043)

−0.218
(0.045)

−0.062
(0.120)

−0.179
(0.125)

0.003
(0.095)

−0.147
(0.099)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)

−0.240
(0.045)

0
(−)

0.494
(0.116)

0
(−)

0.002
(0.0004)



′
πt−1

πe
t−1

yt−1

it−1

t

 . (19)

The log-likelihood ratio test statistic (logLR) is 4.046[0.257] with its p-value, according to

χ2(3), given in the square brackets, so that H
(1)
0 is not rejected at conventional levels.

Next is the testing of

H
(2)
0 : sp (α1) ⊂ sp (b) , (20)

under H
(1)
0 . Imposing a set of additional restrictions consistent with H

(2)
0 yields

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.462
(0.092)

−0.146
(0.099)

0
(−)

−0.210
(0.043)

0
(−)

−0.202
(0.118)

0
(−)

−0.148
(0.094)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)

−0.241
(0.045)

0
(−)

0.508
(0.118)

0
(−)

0.002
(0.0003)



′
πt−1

πe
t−1

yt−1

it−1

t

 , (21)

along with logLR = 4.395[0.623] on the basis of χ2 (6), hence leading to the conclusion that

H
(2)
0 fails to be rejected.

As the third step, we are going to check the rejection of

H
(3)
0 : sp (α1) ⊂ sp (c)

under H
(1)
0 , so that sp (α1) ̸⊂ sp (c) holds. The resulting estimates are given below:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



0
(−)

−0.312
(0.115)

0.081
(0.041)

−0.254
(0.049)

0
(−)

−0.233
(0.128)

0
(−)

−0.137
(0.102)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)

−0.199
(0.038)

0
(−)

0.433
(0.098)

0
(−)

0.002
(0.0003)



′
πt−1

πe
t−1

yt−1

ist−1

t

 .

The corresponding test statistic is logLR = 26.846[0.0002]∗∗ according to χ2 (6), strong

evidence against H
(3)
0 , so we are able to reject this hypothesis. Overall, we conclude that
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b′Xt = πt is identified as the purely-final policy target while c′Xt = πe
t as the intermediate

policy target.

Finally, getting back to (21), we introduce a zero restriction on the first element of the

second adjustment vector, so the feedback mechanism is consistent with the identification

scheme for the cointegrating space:

α̂

(
β̂

ρ̂

)′(
Xt−1

t

)
=



−0.502
(0.089)

0
(−)

0
(−)

−0.193
(0.0411)

0
(−)

−0.238
(0.118)

0
(−)

−0.139
(0.094)





1
(−)

0
(−)

−1
(−)

1
(−)

0
(−)

−0.224
(0.046)

0
(−)

0.497
(0.119)

0
(−)

0.002
(0.0004)



′
πt−1

πe
t−1

yt−1

it−1

t

 , (22)

along with logLR = 6.575[0.474], hence H
(2)
0 being non-rejected according to χ2 (7). The

identified structure in (22) indicate clearly how the instrument affects the intermediate tar-

get, thus having an influence on the purely-final policy target.

The condition for the controllability of c′Xt = πe
t by means of a′Xt = it is given as

c′Ca ̸= 0, which implies b′Ca = c′Ca ̸= 0; see Corollary 3.4. The parameter estimates α̂ and

(β̂′, ρ̂′) recorded in (22) have been used in the estimation of the C matrix:

Ĉ =



0
(−)

0.206
(−)

0.038
(−)

−0.351
(−)

0
(−)

0.206
(0.134)

0.038
(0.057)

−0.351
(0.072)

0
(−)

−1.695
(0.868)

1.525
(0.370)

−0.260
(0.467)

0
(−)

1.179
(0.445)

0.612
(0.190)

0.588
(0.239)


,

in which figures in parentheses denote standard errors. Inference concerning Ĉ is made on

the basis of Paruolo (1997). The element Ĉ24 in bold corresponds to c′Ĉa, which is judged to

be significantly different from 0 at the conventional significance level. The first and second

rows of Ĉ (that is, b′C and c′C) are identical along with the first column zero, aligned with

Corollary 3.4, covering the identity c′Ĉa = Ĉ24 = Ĉ14 = b′Ĉa. With the aim of illuminating

the roles of πe
t and πt in Xt = (πt, π

e
t , yt, it)

′, we refer to Corollary 3.4 and rotate the above

matrix to find

ĈN =


0 0 0 0

0 0.206 0.038 −0.351

0 −1.695 1.525 −0.260

0 1.179 0.612 0.588


for

N =

(
1 −1 0 0

03×1 I3

)
.
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A series of zeros in the first column of ĈN indicates πt lacks the capability to influence all

the other variables in the system, thus categorising πt as being subject to the other series

in the context of policy control, while c′ĈNa ̸= 0 indicates πe
t can be controlled by it;

furthermore, the structure of the first row of N indicates that πt and πe
t form a stationary

linear combination. We are thus justified in the conclusion that the instrument a′Xt = it is

employed to control the intermediate target c′Xt = πe
t , which is cointegrated with the final

target b′Xt = πt, so that the final target is also controllable by the instrument by way of the

intermediate target.

4.3 Empirical analysis of a simulated policy

We now employ the empirical CVAR derived above to simulate a class of new processes

Xnew
t subject to the control rule. The results in the previous subsection allow us to focus

on controlling of c′Xt = πe
t by means of a′Xt = it. We therefore conduct a simulation

exercise controlling inflation expectation rather than actual inflation. We conduct a set of

two simulation studies here to confirm the theoretical arguments presented in the previous

section.

First, we derive Xnew
t with the target value c∗ = 0.015, which is deliberately set lower

than 0.02 (that is, 2%), the actual target rate adopted by the RBNZ, to illustrate how the

policy simulation works. Figure 7(a) records the new instrument a′Xnew
t = inewt under the

projected policy, together with the actual a′Xt = it; the former tends to move above the

latter, indicating the responses of tighter monetary policy attaining the counterfactual target

value c∗ = 0.015. This monetary contraction has caused c′Xnew
t = πe,new

t to move around the

target level in Figure 7(b), where the new series appears to be stationary about a mean of

c∗ = 0.015, in contrast to the actual c′Xt = πe
t , which exhibits more a clearly non-stationary

behaviour than c′Xnew
t = πe,new

t . We can therefore conclude that expected inflation can be

manipulated to achieve its pre-specified target level in the counterfactual world by means

of the short-term rate instrument, as expected from c′Ĉa < 0 discussed in the previous

subsection. This also leads us to argue that actual inflation can also be controlled owing to

its synchronisation to the expected inflation rate.

Second, we put ourselves in the position of the econometrician in this counterfactual

policy environment, and ask: would her empirical analysis be able to detect the policy? To

answer this, we conduct a cointegration study of Xnew
t derived from the above simulation to

verify Proposition 3.5. Table 2 reports, in the same manner as Table 1, a set of trace test

statistics calculated from the generated Xnew
t series. The results provide strong evidence

supporting r = 3, as predicted, in contrast to r = 2 recorded in Table 1. The selection

of r = 3 enables us to further explore whether a cointegrating structure consistent with

Proposition 3.5 truly underlies the system for Xnew
t . The revealed cointegrating relationships
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Figure 7: Policy simulation

Table 2: Inference on the cointegrating rank for Xnew
t .

r = 0 r ≤ 1 r ≤ 2 r ≤ 3

log LR 128.05[0.000]∗∗ 63.861[0.000]∗∗ 33.007[0.000]∗∗ 9.118[0.178]

Note. Figures in square brackets are p-values.
∗∗ denotes significance at the 1% level.

(apart from the linear trend) are

(b, c, δ)′ Xnew
t =


1 0 0

0 1 0

0 0 1

0 0 −2.223
(0059)



′
πnew
t−1

πe,new
t−1

ynewt−1

inewt−1

 ,

and the test statistic is logLR = 4.20[0.380] according to χ2 (4), thus accepting the null

of the joint restrictions. The revealed structure aligns with the predictions in Proposition

3.5, representing a counterfactual world where both actual and expected inflation rates have

become stationary as a consequence of a series of policy interventions. This is accompanied

by the stationary combination of ynewt−1 and inewt−1 alone (not including πe,new
t−1 ), which contrasts

with the second cointegrating relationship in (22) that consists of πe
t−1, yt−1 and it−1.
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5 Conclusion

This paper has explored the application of CVAR-based control theory from an econometri-

cian’s perspective, focusing on model estimation and counterfactual analysis. By reexamining

the mechanisms underlying JJ’s theoretical results, we have discussed some of their possible

shortcomings from the perspective of the applied econometrician. Monte Carlo studies have

illustrated the underlying statistical properties of new and controlled processes, reinforcing

the argument that inference based on the controlled process is unreliable. We have also

shown that the same mathematical results can be interpreted through a different timing of

policy. Here the timing of the JJ framework can be reinterpreted in the context of SVEC.

Instead of modifying policy variables contemporaneously, the authority introduces a struc-

tural shock that is entirely recoverable from past observations, thus avoiding singularity in

the variance of innovations. In this random assignment interpretation the observed process

should be the new process. In addition, this paper has presented a data-driven procedure

for categorising intermediate and final policy targets within a model framework. The ef-

fectiveness of this procedure has been demonstrated through an analysis of New Zealand’s

monetary policy data. This paper hopes to lay the basis for future research aimed at enhanc-

ing the practicality of CVAR-based control analysis in applied macroeconomic and financial

studies.
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Appendix

A Proofs referring to Sections 2 and 3:

Derivation of the controlled process in Section 2.2.2:

The control rule is given by

κ′ = − (b′Ca)
−1

b′C and κ0 = − (b′Ca)
−1
[
b′π∗ − b′α (β′α)

−1
µ
]
, (23)

so by construction

κ′a = − (b′Ca)
−1

b′Ca = −Im,

Im + κ′a = 0m.

Now, consider xctr
t+1 = (Ip + aκ′)xnew

t+1 − aκ0 with κ′α = 0 and Im + κ′a = 0. Using the

dynamics of the ‘new’ process (see equation (23), p. 31 in JJ), namely,

∆xnew
t+1 = [α, (Ip + αβ′) a]

[
β′xnew

t − µ

κ′xnew
t − κ0

]
+ εt+1,

we see that

∆xctr
t+1 = (Ip + aκ′)∆xnew

t+1 = (Ip + aκ′) [α, (Ip + αβ′) a]

[
β′xnew

t − µ

κ′xnew
t − κ0

]
+ (Ip + aκ′) εt+1,

where (Ip + aκ′)α = α, and

(Ip + aκ′) (Ip + αβ′) a = (Ip + αβ′ + aκ′) a,

= (Ip + αβ′) a− a.

Hence,

(Ip + aκ′) (α, (Ip + αβ′) a) = α (Ir, β
′a) .

The controlled process therefore becomes

∆xctr
t+1 = α (Ir, β

′a)

[
β′xnew

t − µ

κ′xnew
t − κ0

]
+ (Ip + aκ′) εt+1

= α [β′xnew
t − µ+ β′a (κ′xnew

t − κ0)] + (Ip + aκ′) εt+1

= α [β′ (Ip + aκ′)xnew
t − µ] + (Ip + aκ′) εt+1

∆xctr
t+1 = α

(
β′xctr

t − µ
)
+ (Ip + aκ′) εt+1
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i.e., although the controlled process seems to exhibit one extra cointegration relation, the

latter is by construction proportional to the original one so it is degenerate. In other words,

the controlled process can be expressed as

∆xctr
t+1 = α (Ir, a)

[
β′xctr

t − µ

κ′xctr
t − κ0

]
+ (Ip + aκ′) εt+1,

and pre-multiplying this expression by κ′ and performing further manipulation yields the

following identity:

κ′xctr
t+1 = κ′xctr

t + κ′a
(
κ′xctr

t − κ0

)
+ κ′ (Ip + aκ′) εt+1

= (Ip + κ′a)κ′xctr
t − κ′aκ0 + (Ip + κ′a)κ′εt+1

= κ0,

due to κ′ (Ip + aκ′) = (Ip + κ′a)κ′ = 0. It then follows that κ′∆xctr
t+1 = 0. The matrix

(Ip + aκ′) Ω (Ip + aκ′)′ is singular since

(Ip + aκ′) Ω (Ip + aκ′)
′
κ = 0,

the matrix has a zero eigenvalue and its determinant is zero.

Next, we extend the above to a CVAR system with k > 1. Without loss of generality, we

fix k = 3 and provide the system in companion form by following JJ:

∆X̃t = α̃
(
β̃′X̃t−1 − µ̃

)
+ ε̃t,

where

X̃t =

 Xt

Xt−1

Xt−2

 , ε̃t =

 εt

0

0

 , µ̃ =

 µ

0

0

 ,

α̃ =

 α Γ1 Γ2

0 Ip 0

0 0 Ip

 and β̃ =

 β Ip 0

0 −Ip Ip

0 0 −Ip

 ,

so that we find

α̃⊥ = (α′
⊥,−α′

⊥Γ1,−α′
⊥Γ2)

′
and β̃⊥ = (β′

⊥, β
′
⊥, β

′
⊥)

′
.

In addition, recalling the definition C = β⊥(α
′
⊥Γβ⊥)

−1α′
⊥ when k > 1, we introduce

ã = (a′, 0, 0)
′

b̃ = (b′, 0, 0)
′

and κ̃ = (κ′
1, κ

′
2, κ

′
3)

′
,

for κ1 = − (b′Ca)−1 b′C, κ2 = −Γ′
1κ1 and κ3 = −Γ′

2κ1 so that κ̃′α̃ = 0 holds. Define

X̃new
t =

(
Xnew′

t , Xctr′
t−1, X

ctr′
t−2

)′
and X̃ctr

t =
(
Xctr′

t , Xctr′
t−1, X

ctr′
t−2

)′
,
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which are driven by

X̃new
t =

(
I3p + α̃β̃′

)
X̃ctr

t−1 − α̃µ̃+ ε̃t, (24)

X̃ctr
t = X̃new

t + ã (ã′ã)
−1
(
κ̃′X̃new

t − κ0

)
, (25)

for κ0 = −(b′Ca)−1[b∗ − b′ (Ip − CΓ) βµ]. Substituting (24) into (25) leads to

X̃ctr
t =

[
I3p + ã (ã′ã)

−1
κ̃′
] [(

I3p + α̃β̃′
)
X̃ctr

t−1 − α̃µ̃+ ε̃t

]
− ã (ã′ã)

−1
κ0

=
[
I3p + ã (ã′ã)

−1
κ̃′
] (

I3p + α̃β̃′
)
X̃ctr

t−1 −
[
I3p + ã (ã′ã)

−1
κ̃′
]
α̃µ̃

− ã (ã′ã)
−1

κ0 +
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t.

This is reduced to, due to κ̃′α̃ = 0,

X̃ctr
t =

[
I3p + ã (ã′ã)

−1
κ̃′ + α̃β̃′

]
X̃ctr

t−1 − α̃µ̃− ã (ã′ã)
−1

κ0 +
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t.

Hence, we arrive at

∆X̃ctr
t =

[
α̃β̃′ + ã (ã′ã)

−1
κ̃′
]
X̃ctr

t−1 − α̃µ̃− ã (ã′ã)
−1

κ0 +
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t

=
[
α̃β̃′, ã (ã′ã)

−1
] [ β̃′X̃ctr

t−1 − µ̃

κ̃′X̃ctr
t−1 − κ0

]
+
[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t.

Noting that Im + κ̃′ã (ã′ã)−1 = Im + κ′
1a (a

′a)−1 = 0, we pre-multiply the above equation by

κ̃′ to derive the identity

κ̃′X̃ctr
t = κ̃′X̃ctr

t−1 + κ̃′ã (ã′ã)
−1
(
κ̃′X̃ctr

t−1 − κ0

)
+ κ̃′

[
I3p + ã (ã′ã)

−1
κ̃′
]
ε̃t

=
[
Im + κ̃′ã (ã′ã)

−1
]
κ̃′X̃ctr

t−1 − κ̃′ã (ã′ã)
−1

κ0 +
[
Im + κ̃′ã (ã′ã)

−1
]
κ̃′ε̃t

= κ0. (26)

Hence,

κ̃′X̃ctr
t = κ′

1

(
Xctr

t − Γ1X
ctr
t−1 − Γ2X

ctr
t−2

)
= κ0,

or, equivalently, its general expression is

κ′
1Γ (L)Xctr

t = κ0, (27)

for Γ (L) = Ip − Γ1L− · · · − ΓkL
k. ■

Proof of Corollary 3.4:

Referring to the definition of the C matrix, we find

(b′ + ϕc′)C = (b′ + ϕc′) β⊥(α
′
⊥Γβ⊥)

−1α′
⊥ = 0,
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which yields the collinearity b′C = −ϕc′C for ϕ ̸= 0. The result b′Cb = c′Cb = 0 follows

directly from Cb = 0. ■

Proof of Proposition 3.5:

The new process for t = k + 1, ..., T is expressed as

∆Xnew
t+1 = (a+ αβ′a, α)

[(
κ′

β′

)
Xnew

t+1 −

(
κ∗

µ

)]
+ εt+1.

Recall the set of known vectors: a = ei, b = ej and c = ek for i ̸= j ̸= k, j ≤ r and i, k ≤
p. Noting the identity κ′ = −(b′Ca)−1b′C = −(b′Ca)−1b′ + (b′Ca)−1b′α (β′α)−1 β′, we can

rewrite the above as

∆Xnew
t+1 = (a+ αβ′a, α)R1

[(
b′

β′

)
Xnew

t+1 −R−1
1

(
κ∗

µ

)]
+ εt+1,

where R1 is a rotation matrix defined as

R1 =

(
−(b′Ca)−1 (b′Ca)−1b′α (β′α)−1

0 I

)
,

and the constant term is subject to

e′jR
−1
1

(
κ∗

µ

)
= b∗.

On the basis of sp (β) ⊂ sp (b+ ϕc) for ϕ ̸= 0, we split β = (β1, β2) = [(b+ ϕc)ω, β2] for a

non-zero scalar ω, where β2 ∈ Rp×(r−1) along with a class of conformable decompositions of

α and the constant term:

α = (α1, α2) and R−1
1

(
κ∗

µ

)
=

 b∗

µ1

µ2

 .

These decompositions lead to

∆Xnew
t+1 = (a+ αβ′a, α1, α2)R1


 b′

ω (b′ + ϕc′)

β′
2

Xnew
t+1 −

 b∗

µ1

µ2


+ εt+1. (28)

Furthermore, by noting that b and c are mutually orthogonal unit vectors, we introduce

another rotation matrix

R2 =


1 0 01×(r−1)

0 1 0

b′β2e
∗
1

...

b′β2e
∗
r−1

c′β2e
∗
1

...

c′β2e
∗
r−1

Ir−1




1 0 01×(r−1)

ω ωϕ 0

0
...

0

0
...

0

Ir−1

 ,
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where e∗j denotes the j-th column vector of Ir−1. Applying R2 to (28), we derive

∆Xnew
t+1 = (a+ αβ′a, α1, α2)R1R2


 b′

c′

δ′

Xnew
t+1 −R−1

2

 b∗

µ1

µ2


+ εt+1.

The rotation R2 generates

δ = β2 − b
(

e∗′1 β
′
2b · · · e∗′r−1β

′
2b
)
− c

(
e∗′1 β

′
2c · · · e∗′r−1β

′
2c
)
,

which guarantees b′δ = c′δ = 0, implying that sp (δ) ⊂ sp (g⊥) for g = (b, c) . It also follows

that

α◦ = (a+ αβ′a, α)R1R2 and µ◦ = R−1
2 R−1

1

(
κ∗

µ

)
.

■

B Data definitions and sources

Details of the definitions of the data analysed in Section 4 and their sources are provided

below.

B.1 Data definitions

πt = the annual (year-on-year) rate of inflation calculated from

the Consumer Price Index (CPI), expressed as a decimal.

πe
t = the annual rate of expected CPI inflation (1 year out)

based on surveys of expectations, expressed as a decimal.

yt = the log of the production-based real Gross Domestic Product, seasonally adjusted.

it = the overnight interbank cash rate, quarterly average of monthly data,

expressed as a decimal.

B.2 Sources

All the data were obtained from the website of the Reserve Bank of New Zealand (accessed

on 14 June 2024). Detailed sources are as follows:

πt - https://www.rbnz.govt.nz/statistics/series/economic-indicators/prices

πe
t - https://www.rbnz.govt.nz/statistics/series/economic-indicators/survey-of-expectations

yt - https://www.rbnz.govt.nz/statistics/series/economic-indicators/gross-domestic-product

it - https://www.rbnz.govt.nz/statistics/series/exchange-and-interest-rates

/wholesale-interest-rates
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C DGPs in the Monte Carlo simulation

The baseline data-generating process for the study in Section 2.3 is commonly formulated

as a CVAR(1) process:

∆Xt = α (β′Xt−1 + µ) + εt,

where εt is a multivariate i.i.d. pseudo normal process, N(0, d2Ω). Here, Ω is a positive

definite symmetric matrix, each diagonal and off-diagonal element assigned a unit value and

a quarter, respectively, along with a damping factor d = 0.01. The parameters for the above

process as well as a set of selection vectors a and b vary according to p and r as follows:

p r α β µ

3 1 (−0.2, 0.1, 0)′ (1,−1, 1)′ −0.01

3 2

(
−0.2 0.1 0

0 −0.1 0

)′ (
1 −1 1

0 1 2

)′

(−0.01,−0.13)′

4 1 (−0.2, 0.1, 0, 0)′ (1,−1,−0.5, 1)′ 0.015

4 2

(
−0.2 0.1 0 0

0 −0.1 −0.2 0

)′ (
1 −1 −0.5 1

0 1 1 −0.5

)′

(0.015,−0.08)′

4 3

 −0.2 0.1 0 0

0 −0.1 −0.2 0

0 0 −0.1 0


 1 −1 −0.5 1

0 1 1 −0.5

0 0 1 −2.0


′

(0.015,−0.08, 0.03)′

p r a b

3 1, 2 (0, 0, 1)′ (1, 0, 0)′

4 1, 2, 3 (0, 0, 0, 1)′ (1, 0, 0, 0)′

The parameters above are selected on the basis of a typical empirical study involving

inflation rates and short-term interest rates, along with other macroeconomic series. The

initial values X0 range from 0.02 to 0.05, mimicking plausible inflation and interest rates. In

each replication of the Monte Carlo study, 30 initial observations are discarded to mitigate

the impact of the initial values.

D Further results from the Monte Carlo simulation
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Figure 8: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 3 and r = 2.
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Figure 9: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 1.
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Figure 10: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 2.
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Figure 11: Distribution of cointegration test statistics at a sample of T = 1, 000 observations

for p = 4 and r = 3.
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