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Abstract: 

Since the influential works of Friedman and Schwartz (1963, 1982) and Hendry and Ericsson 
(1991), on the monetary history of the United States of America and the United Kingdom 
from 1876 to 1975, there has been a great concern in the literature about the instability of 
money demand functions. This concern together with the results of the New Keynesian´s 
models (Woodford, 2003), produced the abandon of money as an instrument of monetary 
policy. Recently, using M1 as the measure of money, Benati, Lucas, Nicolini and Weber 
(2021) have shown, for a shorter and recent period of time, that there is a stable long-run 
money demand for a long list of countries. However, to date there are no studies showing that 
stable long-run and short-run money demand equations exist since the XIX century and how 
it can be used to inform monetary policy based on the quantitative theory of money. By means 
of nonlinear cointegration and nonlinear error-correction models, this paper presents evidence 
of UK stable long-run and short-run money demands of real broad monetary balances from 
1874 to 2023. These equations provide with key elements to identify periods of excess money 
demand generating periods of 6.5% excess inflation, over the historical 2.2% average. Stable 
Money demand estimates provide useful policy rules and additional cross-check instruments 
for monetary policy to reach inflation targets. Furthermore, they help identifying spurious 
transmission channels of monetary policy, when theoretical models impose invalid common 
factor restrictions.   
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1.  INTRODUCTION 

Since the seminal research by Friedman and Schwartz (1963, 1982) on the monetary 

history of the US and the UK from 1876 to 1975, there has been a great concern in the 

literature about the potential instability of money demand functions. According to the 

traditional prescription of the Quantity Theory of Money (QTM) expressed in growth 

rates (∆𝑝! ≡ ∆𝑚! − ∆𝑦! + ∆𝑣! ,	), if the velocity of circulation of money is close to being 

constant  (∆𝑣!»	0), central banks could achieve a zero inflation rate (𝛥𝑝! = 0) by setting  

the growth rate of money supply equal to the growth rate of real income (∆𝑚! = ∆𝑦!).  

As a result, the stability of money demand equations became a central tenet in the design 

of conventional monetary policy from early 1970s until the mid-1990s, developing into 

one of the best researched fields in applied macroeconomics. Over several decades, 

literally hundreds of papers have been published that contain empirical money demand 

estimations for many countries and time periods with quite diverse findings. The range 

of the estimated income and interest-rate elasticities is wide, and while some papers 

maintain that money demand is stable, others reach the opposite conclusion.  

Among those defending stability, David Hendry´s empirical contributions to this 

literature have been extremely influential, especially regarding the UK money demand 

over long historical periods ending in the early 1990s. As illustrated in Hendry and 

Ericsson (1991)´s revaluation of Friedman and Schwartz (1982)´phase-average results for 

the UK, the use of error-correction (cointegration) techniques were able to restore the 

short-run and long-run stability of this function. However, despite these favorable results, 

new evidence about unpredictable shifts in money velocity, particularly in the US, 

implied the withdrawal of monetary aggregates as the main tool used by central banks to 

control monetary policy. For example, the US Fed already de-emphasized their role in 

the 1990s, while the German Bundesbank faced severe difficulties with meeting short-

term monetary growth during that decade. Faced with these problems, the new monetary 

paradigm switched from money growth intermediate targets to the choice of inflation (and 

output) targets monitored through policy rules (i.e. Taylor rules) steering short-term 

interest rates. 

This tendency was reinforced by the rise of a class of New Keynesian (NK) models 

that were able to explain fluctuations in key macroeconomic time series abstracting from 

shifts in money velocity or allowing them to mirror movements in real balances. The NK 



model was considered as the right framework to think about optimal monetary policy in 

economies subject to nominal rigidities, leading to trade-offs between inflation and the 

output gap in the short run. Money neutrality only held in the long run while monetary 

aggregates played no direct role whatsoever in the transmission of monetary policy to 

output and inflation at higher frequencies. Monetary policy decisions were made 

regarding the targeted nominal interest rate (the Bank Rate in the case of the Bank of 

England) whose changes, due to price rigidity, influenced the real interest rate. The latter 

influences aggregate demand via the gap between actual output and the economy’s 

potential output that would be realized if prices were fully flexible. Changes in the output 

gap in turn impact on inflation via the NK Phillips curve. Of course, in this framework, 

the supply of money is influenced by the open-market operations that the central bank 

conducts to achieve the intended rate of interest, so that that actual money growth then 

results from the interplay of money supply and money demand in a recursive fashion. In 

other words, central banks supply sufficient money to satisfy demand for real balances at 

the intended rate of interest, the current price level and current income. Consequently, the 

optimal interest rate policy was characterized without any recourse to monetary 

aggregates. From this perspective, efforts to improve measures of the money supply or to 

obtain better empirical estimates of the parameters ruling money demand were assessed 

as being pointless to improve the performance of monetary policy (Woodford 2003). 

Faced with these visions there was however an alternative branch of the literature which 

defended the stability of money demand at low frequencies to determine the price level, 

particularly in situations where the output gap or the real interest rates were subject to 

measurement errors, calling for a two-pillar monetary strategy, like the one implemented 

by the ECB. According, to this strategy, Taylor rules would be implemented in normal 

times whereas money growth target would play a role to discipline inflation in times of 

turmoil.  

Yet, with the arrival of the Great Recession in 2008, the simple decision rules in 

operation for two decades partly became ineffective in a near-zero interest rate regime. 

They were replaced by unconventional monetary policy tools, such as large-scale asset 

purchase (LSAP) programs or quantitative easing (QE). At the zero-lower bound, being 

unable to achieve any further reductions in the short-term nominal interest rate that banks 

charge each other for an overnight loan, central banks implemented large-scale purchases 

of longer-term maturities, including government and corporate bonds and even stocks. As 



a result of these actions, the amount of money circulating in several economies increased 

substantially, aiming to boost aggregate demand through cuts in the cost of borrowing by 

households and firms. Yet, for that strategy to succeed, money demand ought to remain 

stable. Hence, with the increase of uncertainties regarding monetary policy further 

accentuated during the onset of the pandemic crisis in 2020, understanding the dynamics 

of the demand for real money balances has experienced a revival, emerging again as a 

relevant issue in current discussions about monetary policy. 

 In view of these circumstances, this paper revisits the money demand 

specifications proposed by David Hendry and co-authors in the past spanning more than 

a century of data (1878-1993 in his latest contribution to this topic; cf.  Ericsson, Hendry, 

and Prestwich (1998)), and others UK money demand competing models by Escribano 

(1985, 1986, 2004) and Teräsvirta and Eliasson (2001). We address to what extent its 

main features remain valid in modelling long-run trends and short-run variations in 

money velocity using an updated sample which ends in 2023 and therefore covers the 

Great Recession and the beginning of the Great Contagion. In doing so, we aim at 

improving our ability to interpret the influence of broad money growth on future nominal 

GDP growth in a way that accords with basic monetary theory. Our main findings are the 

money demand specifications proposed two decades ago remain valid even after major 

events, like the Great Recession, the banking crisis and the covid-pandemic. One key 

finding is that both money growth and the pace of recovery in velocity can help track 

changes in real income and in interest rates growth needed to return inflation to its target.  

We show in this paper that the main five robust empirical UK drivers of nominal 

money since the XIX century are: i) In the long run, the evolution of prices, real income 

(both with an elasticity equal to one) and short-term nominal interest rate (cointegration) 

based on the Quantity Theory of Money. ii) In the short run, or with high frequency 

fluctuations, the main drivers of the evolution of the rate of growth of real balances are 

the rates of growth of prices (inflation), rate of growth of short-term interest rates, the rate 

of growth of long-term interest rates and the equilibrium corrections terms towards the 

previous long-run equilibria (nonlinear equilibrium-correction). Furthermore, iii) real 

income is an important determinant in long-run money demand but its rate of growth 

plays no direct (only indirect) role on the rate of growth of real money demand, once we 

eliminate this spurious relation in rates of growth obtained by imposing a common factor 

restriction. iv) The coefficients of the money demand variables in levels (cointegration) 



and in rates of growth are different (no common factor restriction accepted), mainly 

because the variables of the equation in differences, real income growth and changes in 

short term interest rates, are not exogenous, with important monetary policy implications. 

And finally, v) periods of excess real money demand, due to exogenous shocks like wars, 

regulatory changes and COVID, are responsible of an additional 6.5% increase in 

unconditional inflation, over the historical average of 2.2% inflation´s rate. Therefore, the 

information obtained estimating stable long-run and short-run real money demands, 

provides additional cross-check instruments to anticipate future inflationary periods, 

caused by periods of excess money demand (excess liquidity). 

In this context, the paper is structured as follows: Section 2 reviews the main 

empirical literature on money demand functions; Section 3 introduces and describes the 

historical data for the UK; Section 4 analyzes nonlinear equilibrium correction models 

(NEC) and for tests for cointegration based on Monte Carlo Simulations; Section 5 

presents and estimates the long-run cointegration equilibrium and the NEC empirical 

models of UK money demand; Section 6 assesses the monetary policy implications of our 

empirical findings; and Section 7 concludes. 

2. WHY MONEY DEMAND? 

In recent decades, economists and central banks have shifted their focus from 

monetary aggregates to interest rate rules and inflation stabilization policies. What was 

once considered the cornerstone of monetary policy until the mid-1980s has taken a 

backseat in modern macroeconomic theory and practice, as seen in New-Keynesian 

Models (Woodford 2003; Galí 2007). This transition, however, has not been without 

empirical justification. 

Historically, shocks to real money demand have been volatile and persistent, 

making money targeting prone to introducing substantial policy outcome volatility 

(Canova and Menz 2011; Benati et al. 2021). Interest rate rules, on the other hand, have 

demonstrated immunity to such shocks and proven successful in stabilizing inflation 

rates. Traditional models have struggled to maintain stability over extended periods, 

particularly with post-1970s data, leading to implausible parameter estimates, 

autocorrelated errors, and poor forecasts (B. M. Friedman and Kuttner 1992). Further, the 

instability of monetary aggregates observed in the late 1990s and the weakening 



relationship between these aggregates and real economic activity in the short run cast 

doubt on money demand as a reliable policy tool. 

The financial crisis reignited discussions on optimal monetary policy 

implementation, particularly when interest rates approached the effective lower bound 

(ELB). Under such constraints, money-based rules may outperform traditional 

frameworks, as suggested by Belongia and Ireland (2019). Additionally, some evidence 

points to the value of incorporating money into interest rate rules like the Taylor´s Rule, 

enhancing model accuracy and effectiveness in inflation control (Qureshi 2021). 

Nonetheless, the role of money as a dependable economic indicator hinge on the ability 

to forecast and model monetary aggregate trends consistently. In this regard, the findings 

of Benati et al. (2021), which highlight the stability of M1 long-run demand across 38 

countries over extended sample periods, are particularly significant. Yet, concerns about 

stability persist, both in the short and long run, especially for broader monetary 

aggregates. 

In this context, this paper examines the main drivers of nominal and real UK 

money demand since the 19th century, uncovering four empirical regularities that are 

robust under alternative and competing dynamic nonlinear specifications.  

2.1.  Long-run Money Demand and QTM 

Understanding of money demand relationships is crucial for reducing the risk of 

implementing destabilizing monetary policies (Ball 2012). Many of the core principles 

underlying this understanding were established over half a century ago by monetarist 

theories, which are deeply rooted in the Quantity Theory of Money (Fisher 1911; M. 

Friedman 1956). These theories emphasize the significant role of money in driving 

economic fluctuations. According to monetarists, if the velocity of money—or its inverse, 

the demand for money—can be modeled as a stable function of the nominal short-run 

interest rate  (M. Friedman 1956; 1961; Selden 1956; Laidler 1993) then the aggregate 

price level, real income, and interest rates emerge as the primary long-run determinants 

of money demand, consistent with the quantity of money. 

Since its introduction by Fisher (1911), the classical QTM has formed the basis of 

many money demand theories. These models often incorporate the transactions demand 

approach, which was further developed through the well-known square root formula 

linking money and interest rates. This formulation draws from the seminal works of 



Baumol (1952) and Tobin (1965), which provide a foundational framework for 

understanding the dynamics between money demand and interest rates in both theoretical 

and practical contexts. 

A simple theoretical derivation of the long-run money demand based on QTM is 

the following. Let, 𝑀𝑉 = 𝑃𝑌 where 𝑉= velocity of circulation of money, 𝑀= nominal 

money stock, 𝑃= output deflator, and 𝑌= real output. In equilibrium, 𝑀" = 𝑀# = 𝑀 . 

According to QTM, P is the endogenous variable. In the money demand	approach, 𝑀 is 

the endogenous variable and 	$
%&
= '

(
⇔𝑀 = '

(
𝑃𝑌.                                                                  

Assuming that velocity is  𝑉 = 𝑓(𝑅𝑆), where 𝑅𝑆	 is the nominal short-run interest 

rate, with	𝑓’(𝑅𝑆) > 0, so that 1 𝑉; = 𝑔(𝑅𝑆), with  𝑔’(𝑅𝑆) < 0. Note1 that 𝑅𝑆	 could also 

be formulated as the spread between the alternative (bond) and own (deposit) interest 

rates. Taking logs (small letters) yields  𝑚 − 𝑝 − 𝑦= log 𝑔(𝑅𝑆). In log-linear form 

becomes, 𝑙𝑛𝑔(𝑅𝑆) = 	𝛼 − d	rs or in semi-log form 𝑚 − 𝑝 − 𝑦 = 	𝛼 − d	RS. 

The well-known Baumol-Tobin money demand equation, Baumol (1952) and 

Tobin (1965), can be derived as follows. Suppose I get nominal income 𝑃𝑌 which is 

deposited in a bank account which is fully withdrawn in one period, whose length is 

normalized to 1. Since at the beginning of each period there is an amount	𝑃𝑌 and at the 

end there is 0, the average amount of money I withdraw each period is 𝑃𝑌 2; .		Similarly,	if 

I initially withdraw half of my  income, spend it, then in the middle of the period go 

back to the bank and withdraw the rest, I have made two withdrawals (𝑛 = 2) and my 

average money holdings M are equal to 𝑀 = 𝑃𝑌
4;  . In general, the person’s average 

money holdings will be 𝑀 = 𝑃𝑌
2𝑛; .  Assume that the nominal cost of these transactions 

is 	𝑐(𝑛) = 	𝜓	𝑛) 	 with 𝜎 > 0.		Likewise, the amount of interest income lost per period 

due the withdrawals is 𝑅𝑆 ∗ 𝑌 2𝑛; .  Hence2, 𝑛 is chosen to minimize total costs of 

transactions and foregone interest income, that is, 

𝑛∗ = argmin 	𝜓	𝑛) +
𝑅𝑆 ∗ 𝑃𝑌
2𝑛 . 

 
1 We could also introduce in 𝑔(. ), dummy variables to capture changes in financial regulation, wars, 
COVID periods, etc. as we obtain in the empirical application. 
2 We have benefited from discussions with Juan J. Dolado about the unreliable role of money for inflation 
control. Furthermore, he suggested us this alternative theoretical derivation of the long-run money demand. 



whose first order condition is,  

𝜓𝜎𝑛)+' =
𝑅𝑆 ∗ 𝑃𝑌
2𝑛, ⇔ 𝑛∗ = S

𝑅𝑆 ∗ 𝑃𝑌
2𝜓𝜎 T

'
'-)

 

Money demand per period is then given by 

																																														𝑀∗ = %&
,.∗

≈= 𝑃𝑌
"

#$"

𝑅𝑆
#

#$"
V  .  

Dividing by P and taking logs yields the log-log equation, 

																																									𝑚 − 𝑝 = 𝜎/(1 + 𝜎)	𝑦 − 1/(1 + 𝜎)		rs,              

such that for  𝜎 = 1,	 yields Baumol-Tobin´s square root specification with income and 

interest rate elasticities given by 0.5 and -0.5, respectively. A problem with this 

specification of the interest rate is that changes in logs are akin to percentage points, 

which are the units of 𝑅𝑆. Thus, rs does not have meaningful units and a 0.5 

increase/reduction in short-term interest rates have the same effect no matter whether the 

level of the interest rate is high or low. This is solved by expressing the long-run money 

demand in semi-log form, 	leading to, 

 
where now changes in all variables are measured in the same units.  

 Woodford (2003), Ireland (2004), Ansdres et al. (2006), Benati et al. (2021), 

proposed alternative stochastic approaches to derive relations among money, income, 

prices, and nominal short-run interest rate, able to explain the long-run behavior (at low 

spectrum frequencies) of money demand. New-Keynesian modeling approaches, see 

Woodford (2003), of monetary policy suggest that the short-term nominal interest rate is 

the major policy instrument of central banks to control inflation. The optimal level is 

based on inflation forecasts and output gaps (demand shocks and cost-push shocks), 

independent on monetary aggregates (money demand parameters do not enter here) but 

none of them are observable variables.  

 Lucas (2007) mentioned that this New-Keynesian´s models cannot explain the 

inflation of the 1970´s where the cyclical trends in money growth and inflation moves in 

a parallel way. This empirical regularity is consistent with the QTM. Lucas (2007) 

supports the inclusion of monetary aggregates to cross-check on interest rate policies. 



formulations, based the European Central Bank (ECB) two pillars policy (one based on 

setting nominal short-term interest for controlling inflations and two based on cross-

checks based on the QTM linking money growth and inflation). Wieland et al. (2010) 

show that including persistent central bank misperceptions into New-Keynesian´s models 

can generate similar cyclical trends in inflation and growth in monetary aggregates, 

mentioned before and included in the graphs of Benati (2005). Modern Keynesian´s 

monetary policy does not consider money as a useful instrument to control inflation (Galí 

2007; Woodford 2007), not even in the presence of a stable money demand. Galí (2007) 

says, “The value of monitoring monetary aggregates or measures of excess liquidity as 

part of an assessment of the risks to price stability is questionable, even in the presence 

of a stable money demand.” However, we argue in this paper that we get additional and 

useful monetary policy information from having stable money demand estimates. 

In the following sections, selected UK empirical models in the literature will be 

replicated first using the original samples periods, then with a mechanically extended to 

2023 to identify main changes and finally new specifications for each formulation will be 

suggested. We will also discuss other key empirical issues like, alternative broad money 

measures, alternative measures of the opportunity cost of holding money, alternative 

functional forms of long-run money demand (nonlinear cointegration) and alternative 

short-run functional forms of money demand (nonlinear equilibrium correction, smooth 

transition models). 

3. HISTORICAL DATA FOR THE UK (1871 - 2023) 

We now present and describe the historical data and its properties to determine the 

class of econometric models to consider in the empirical modeling of the money demand 

in the long run (cointegration), and in the short run (dynamic models). 

The basic data encompasses annual figures of the nominal broad money (𝑀!), 

nominal high-powered money (𝐻t), real income (𝑌!), short-run (𝑅𝑆!) and long-run (𝑅𝐿!), 

interest rates and prices (𝑃!). The sample period spans the period from 1871 until 2023. 

Data have been mainly retrieved from Escribano (2004) and Thomas and Dimsdale 

(2017) and updated appropriately (see Data Appendix A). This dataset for the UK was 

originally constructed by Friedman and Schwartz (1982) and later rescaled by Hendry 

and Ericsson (1991) to compensate for the Southern Ireland (Republic of Ireland) effect. 



Uppercase letters are used for variables in levels, while lowercase letters denote 

variables in natural logarithms and delta (∆) indicates the difference operator3. Appendix 

A elaborates in more detail the data sources and the definitions of the variables used. 

Based on these data, we have constructed the natural logarithms of real money balances 

(𝑚 − 𝑝)!, the natural logarithm of real income (𝑦!), the opportunity cost measure of 

holding money in levels (𝑅𝑁𝐴!) and in logs with lower letters (𝑟𝑛𝑎!) and the inflation 

rate (∆𝑝!)4. These variables integrate four key historical monetary trends derived from the 

Quantity Theory of Money (see Figure 1): the link between short-run interest rates, real 

income, real money balances, and the response of prices to money growth. These 

relationships, previously documented in the UK by Friedman and Schwartz (1982), 

Hendry and Ericsson (1991), among others, provide the foundation for constructing 

empirical money demand and inflation equilibrium-correction models study afterwards.  

As proposed by Ericsson, Hendry, and Prestwich (1998), we keep the use of the 

opportunity cost measure 𝑅𝑁𝐴! ≡ 𝑅𝑆! ∗ ^𝐻!/ 𝑀!
/⁄ `/𝑐 , where 𝑅𝑆! is the short-term 

interest rate, 𝐻!/ 𝑀!
/⁄  is the proportion of high-powered money to broad money using 

actual values (not spliced), and c is a constant rescaling factor equal to 0.25. Unlike 

traditional interest rate measures, this measure is particularly effective in capturing 

substitution processes among historical monetary components, as it adjusts short-term 

interest rates (𝑅𝑆!) to reflect changes in the composition of money (𝐻!/ 𝑀!
/⁄ ), especially 

during periods of definitional changes in monetary aggregates (see Figure B.1). By 

relying on actual values of monetary components without splicing, this measure ensures 

a more accurate representation of real movements, making it highly appropriate for 

analyzing broad money dynamics and ensuring the robustness of empirical results.  

The unit root (and other possible sources of no stationarity) analysis in the data 

corroborates what is usually reported in the literature: real money balances, real income, 

prices, and interest rates are I(1) processes. Standard unit-root analysis such as the 

Augmented Dickey-Fuller (ADF) test, the correlograms, and the plotted time series, as 

 
3 The difference operator ∆ is defined generally as ∆!"𝑥# = $1 − 𝐿!(

"𝑥# for 𝑖 > 0 and 𝑗 > 0, where L is the lag operator 
that shift the variable j periods into the past, and i is the number of differences taken. If i or j are not explicit, it is 
assumed to be unity (i.e.,	∆𝑥# = 𝑥# − 𝑥#$%). For convenience in some graphs this operator is presented as "d" followed 
by the variable name at period t in in parenthesis (i.e., d_mp (-1) = ∆(𝑚 − 𝑝)#$%).  
4 The detailed discussion on descriptive stats, variable selection, limitations, and sensitivity analysis for each specific 
variable used in this empirical application can be found in-depth in Appendix B of Escribano and Rodriguez (2023, p. 
127-51).  



well as nonparametric tests (Rank Unit Root Test) of Escribano, Sipols, and Aparicio 

(2006a) robust to monotonic nonlinear transformations of the variables can be found in 

Appendix B of Escribano and Rodriguez (2023, p. 127-51). 

 
Figure 1. Main Historical Monetary Trends (1871 – 2023) 

Notes: (a) nominal broad money and prices in logs (𝑚# and 𝑝#), (b) real money balances and real output in 

logs ((𝑚 − 𝑝)#	and 𝑦#), (c) money velocity in logs and adjusted short-run interest rates in percent per annum (𝑣# and 

𝑅𝑁𝐴#), and (d) nominal money`s growth and the inflation rate (∆𝑚#	and ∆𝑝#). Note that in (a), (b) and (c) the left axis 

corresponds to the series with a dashed line. Source: see data Appendix A. 

For the modelling of money demand, we focus on broad money measures due to 

its higher degree of "moneyness" and its ability to capture substitution processes among 

various monetary assets, offering a more accurate picture of monetary trends and growth. 

While narrow money, consisting of highly liquid assets,  remains valuable for studying 

high-liquidity movements and cross-country comparisons — as shown recently by Benati 

et al. (2021) — broad money measures provide a more stable basis for analyzing long-

term relationships and monetary dynamics. Broad money's stability and its alignment with 

economic indicators like output, and inflation make it particularly suitable for this 

analysis, especially given the availability of long historical series in the UK dating back 

to the late 19th century. 
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4. NONLINEAR EQUILIBRIUM CORRECTION MODELS (NEC) AND 

COINTEGRATION TESTING: MONTE CARLO SIMULATIONS 

Consider the following bivariate, yt, xt, cointegrating system (1.1) - (1.3), with -1 <r1 

<1, ht and et , i.i.d. N(0,1). Those conditions are sufficient for zt to be I(0),  xt I(1) and 

from (1.1) yt with bx ¹ 0 is also I(1). 

                                             (1.1) 

                                           (1.2) 

                                           (1.3) 

An equivalent and useful reparameterization of (1.2) is the following Dickey-Fuller 

(1979) testing equation, where now -2< (r1 -1) <0, 

 

A simple and useful generalization to nonlinear error correction (NEC) models is the 

following, 

                                       (2.1) 

                (2.2) 

 .                                             (2.3) 

A usual condition for zt to be I(0) is that the nonlinear function on the right of (2.2) 

is asymptotically bounded by a linear function of zt (for large absolute values of zt the 

nonlinear function is dominated by a linear function), Saikkonen (2005), Kapetanios, 

Shin, and Snell (2006), and Kiliç (2011). For that, if there is parameter multiplying a 

nondecreasing nonlinear function, this parameter must be negative, so that the nonlinear 

function is decreasing. And the opposite if the nonlinear function is decreasing. The 

condition now for zt to be I(0) is that the first derivative of (2.2) with respect to zt-1 should 

be negative, as will be seen by simulations below. Sufficient conditions for this NEC-test 

are that b1 and b3 are negative with (b1 + 3b3 z2 t) < -2b2 zt. Testing in (2.2) the null 

hypothesis (H0) that the first derivative of cubic polynomial is zero against the alternative 

hypothesis (H1) that is negative, is a nonlinear version of the well-known EG-test. 



To obtain from (2.1) - (2.3) a nonlinear error-correction (equilibrium correction) 

model without imposing the COMFAC restriction, we set  , and taking 

first differences in (2.1) together with (2.2) to get (3.1), where d = bx+bz,  

               (3.1) 

.                                               (3.2) 

Testing now in (3.1) the null hypothesis (H0) that the first derivative of the cubic 

polynomial is zero against the alternative hypothesis (H1) that is negative, is a nonlinear 

version of the error correction test, NEC-test. 

A Simple Bivariate Nonlinear Granger´s Representation Theorem is, 

(i) If the variables yt and xt from equations (2.1) – (2.3) satisfy the condition that 

the first derivative of (2.2) w.r.t. zt-1 is negative (and asymptotically bounded 

by a linear function), then they are cointegrated and have a nonlinear error 

correction model, given by (3.1) – (3.2).  

(ii) If the nonlinear error correction given by equations (3.1) – (3.2) satisfy that the 

first derivative of (3.1) w.r.t zt-1 is negative (and asymptotically bounded by a 

linear function), then variables yt and xt are cointegrated. 

In general, if the variables are cointegrated, we know that there is at least an 

equilibrium-correction model in one of the two single ARDL(p,q) models. But we do not 

know if the equilibrium correction is linear or nonlinear. To get intuition on the previous 

cointegrated condition in small samples, that the first derivative of the nonlinear error 

correction term with respect to zt-1 must be negative, we generate data in Figure 2. The 

data generating process (DGP) is the following, 

                                       (4.1) 

                                        (4.2) 

                                                (4.3) 

where ht and ex,t are i.i.d. N(0,1). The cubic polynomial NEC is 

 



In Figure 2, we represent the system (4.1) to (4.3) with parameter values equal to b1= 

-0.005, b2= 0.003, b3= -0.00092, for the decreasing polynomial (error correcting). In the 

first row of each block of graphs, we plot the two series yt and xt through time, and clearly 

they are nonstationary and I(1). The decreasing cubic-polynomial error correction is in 

the graph to the right of it. In the second row, we plot the residuals of the cointegrating 

equation and they looks I(0), or stationary as expected. Finally, the second graph of the 

second row shows that the first derivative of the NEC is negative (only equal to 0 at 

equilibrium) for all values of zt. Similar graphs, but for the Logistic are in Escribano et 

al. (2025). 

          

Figure 2. Decreasing (Left) and Increasing (Right) Cubic Polynomial Error-Correction 
Notes: This figure illustrates the system defined by equations (4.1) to (4.3), using parameter values of β₁ = -0.005, β₂ = 
0.003, and β₃ = -0.00092 for the decreasing cubic-polynomial error correction and b1= 0.005, b2= −0.003, b3= 0.00092 
for the increasing case shown on the right-hand side. Source: Authors’ calculations. 

In Figure 2, we also represent the system (4.1) to (4.3) for the following parameter 

values equal to b1= 0.005, b2= −0.003, b3= 0.00092, for increasing polynomials (non-

error correcting) that do not generate stationary equilibrium errors (zt). 

4.1. Monte Carlo Simulations 

Monte Carlo Simulations are based on the data generating process (DGP) of Arranz 

and Escribano (2000) that was also used by Kapetanios et al. (2006). Under the null 

hypothesis (H0) that variables yt and xt are I(1) and not cointegrated, the data generating 

process (DGP) is,  

                                             (5.1) 

                                                   (5.2) 



with ht and et , i.i.d. N(0,1), d = 0, 0.5, 1, x0 = 0 and y0 = 0, the sample size T=150, 500. 

Burn-in B=50, 50 initial observations are discarded, M=2000 is the number of 

replications, K. 

Under the alternative hypothesis (H1), that variables yt and xt are I(1) and 

cointegrated with a NEC-cubic polynomial model5, the data generating process (DGP) is,  

                                             (6.1) 

              (6.2) 

                                                   (6.3) 

The first derivative of the cubic polynomial is negative if (b1+2b2 zt +3b3z2t)<0. 

Empirically, we can always plot the first derivate for all values of zt to check if is always 

negative. But in order to propose a simple and useful EC-test we can test whether b1 

and/or b3 are, jointly or individually, significant and negative in either the NEC-test (6.2) 

or the nonlinear version of Engle and Granger (1987) test, NEG-test, based on equation 

(7). In (7) we are imposing the COMFAC restriction that d in (5.1) is equal to b in (1.1). 

To get the nonlinear version of the Dickey-Fuller (1979) test, or EG-test, based on the 

cointegrating errors zt of (6.1), we have, 

                              (7) 

To implement this generalization of the two-step approach of Engle and Granger 

(1987), EG-test, we first estimate the cointegrating equation (8.1) by OLS, 

                                                (8.1) 

                          (8.2) 

Now, based on alternative parameterization of equations (8.2), we test the null 

hypothesis (H0) of no- cointegration (a unit root in zt) that b1=0, b2=0 and b3=0 in three 

different specifications of (10.1), (10.2) and (10.3), with the augmented version of the 

equations to control for the possible dynamic misspecifications to obtain residuals that 

 
5 Notice that a cubic polynomial is only a general small sample approximation but asymptotically is 
unbounded and therefore it does not satisfy the condition that is bounded by a linear function. If we want 
to impose the asymptotically bounded condition on the polynomial function, we need to consider the 
alternative class of rational polynomials, as was done in Escribano (2004). 



are white noise. In all cases estimated under H1, cointegration, we expect to obtain values 

b1<0 and b3<0 and at least one of them significant. Kapetanios et al. (2006) derived the 

asymptotic distributions of the F-test and the alternative t-tests based on the error 

correction coefficients of equations (9.2) and (9.3), for the exponential smooth transition 

regression (ESTR). Kiliç (2011) proposed a different test statistic and apply it also to the 

logistic case (LSTR). Both papers provide the corresponding asymptotical critical values.  

Here, we analyze the small samples effects and generate the 5% and 10% critical 

values (c.v.) of EC-test and NEC-test, under the null hypothesis (Ho) of no cointegration, 

with DGP given by equations (5.1) and (5.2). Those c.v. are independent of d and are 

included in Table 1 for two sample sizes T=150 (similar size to this UK money demand 

data) and T=500.  

Table 1. Critical Values of Linear and Nonlinear Equilibrium-Correction (EC) Tests 

 𝛼 =	5% 𝛼 =	10% 
T EC (𝒕𝟏) NEC (𝒕𝟑) NEC (𝒕𝟏∗ ) NEC (𝒕𝟑∗ ) EC (𝒕𝟏) NEC (𝒕𝟑) NEC (𝒕𝟏∗ ) NEC (𝒕𝟑∗ ) 

150 -1.8738 -2.3841 -3.2052 -3.1274 -1.5502 -2.0471 -2.8918 -2.8256 

500 -1.8241 -2.4589 -3.1893 -3.1423 -1.4481 -2.1443 -2.8645 -2.8507 
Notes: The 5% critical values (c.v.) of linear (EC) and nonlinear (NEC) cointegration tests under the null hypothesis (H₀) 
of no cointegration with DGP given by equations (5.1) an (5.2) for simulated sample T. Source: Authors´ calculations  

The EC-test and NEC-test statistics are obtained from equations (9.1) to (9.3). The 

t-ratio of b1 in in the linear EC model (9.1) is called, (t*1), and the t-ratio of b1 estimated 

in the NEC model with the three terms of the cubic polynomial, NEC(1,2,3), in (9.3) is 

called (t1). The t-ratio of b3 when including only the cubic term, NEC(3), in (9.2) is called, 

(t*3), and the t-ratio of b3 estimated in the NEC(1,2,3) in (9.3) is called (t3).  

EC-test:                             (9.1) 

NEC(3)-test:                             (9.2) 

NEC(1,2,3)-test:    (9.3) 

The power of the EC (t*1-test) is analyzed in the testing equation (9.1) using b1 = 

-0.001, -0.003, -0.05 -0.1, -0.2. In equation (9.2) for the NEC (t3*-test) the values of are: 

b3 = -0.001, -0.003, -0.05, and for equation (9.3), the t-tests (t1, t2 and t3), with parameter 

values b1 = -0.001, -0.003, -0.05 -0.1, -0.2, for b2 =-0.03 and for b3 = -0.001, -0.003, -



0.05. The same parameter values are used in EG test and NEG tests, of the testing 

equations (10.1), (10.2) and (10.3). See Figure 3 to see the type of cubic polynomials that 

we are considering. 

Nonlinear EG-test and NEG-test are estimated based on the augmented models, 

(10.1) to (10.3), using p-lags of the dependent variable Dzt, to make sure that the residuals 

are white noise. 

EG-test:                                 (10.1) 

NEG(3)-test:                              (10.2) 

NEG(1,2,3)-test :            (10.3) 

The 5% and 10% critical values (c.v.) of alternative EG-test and NEG-test, 

obtained under the null hypothesis (Ho) of no cointegration with DGP given by equations 

(5.1) and (5.2), are independent of d and included in Table 2. 

Table 2. Critical Values of Linear and Nonlinear Engle-Granger (EG) Tests 

 𝛼 =	5% 𝛼 =	10% 
T EG (𝒕𝟏) NEG (𝒕𝟑) NEG (𝒕𝟏∗ ) NEG (𝒕𝟑∗ ) EG (𝒕𝟏) NEG (𝒕𝟑) NEG (𝒕𝟏∗ ) NEG (𝒕𝟑∗ ) 

150 -1.9949 -2.4992 -3.4188 -3.4276 -1.6057 -2.1864 -3.1373 -3.0541 

500 -1.89135 -2.5189 -3.4052 -3.3798 -1.4713 -2.1628 -3.0540 -3.0706 
Notes: The 5% critical values (c.v.) of linear (EG) and nonlinear (NEG) cointegration tests under the null hypothesis (H₀) 
of no cointegration with DGP given by equations (5.1) an (5.2) for simulated sample T. Source: Authors´ calculations  

The EG-test and NEG-test statistics are estimated from equations (10.1) to (10.3). 

The t-ratio of b1 in the linear EG equation (10.1) is named, (t*1), and the t-ratio of b1 

estimated in the NEG model with the three terms of the cubic polynomial, NEC(1,2,3), 

in (10.3) is named (t1). The t-ratio of b3 when including only the cubic term, NEC(3), in 

(10.2) is (t*3), and the t-ratio of b3 estimated in the NEC(1,2,3) in (10.3) is named (t3). 

To evaluate the power of the alternative linear and nonlinear cointegration test, 

alternative DGPs are generated under H1 (cointegration), models (9.1) to (9.3) and (10.1) 

to (10.3), with several parameter values. For comparison, the numerical values assigned 

for b1, b2, b3 and of d, are the same for all tests. From Table 3 to Table 14, we summarize 



the power of these test, under different parameter values of b1, b2, b3 and of d, in equations 

(9.1) to (9.3) and the nonlinear graph are in the following Figure 3, 

 
Figure 3. NEC-Cubic Polynomials and their first derivatives for the different parameter 

values used in the Monte Carlo analysis of the power of NEC-test and NEG-test 

From the analysis of the power of the EC-test and the NEC-test, included from 

Table 3 to Table 8, we take the following conclusions: i) When de DGP is a linear EC 

model (9.1), the highest power is obtained with the t-ratio (t*3), from equation (9.2). The 

order of the power of the test statistics is the following, t*3 > t*1 > t1> t3. ii) When the DGP 

is NEC(3) model (9.2), again t*3 has the maximum power but t3 has high power as well. 

iii) When the DGP is NEC(1,2,3) model (9.3), t*3 has the maximum power, t3 has high 

power as well but t1 has low power. In summary, the simplest and more powerful error 

correction test, is t*3 from NEC(3) model (9.2), independent on whether the DGP is linear 

a linear EC or is a nonlinear EC, NEC. In summary, t*3, t-ratio from the pure cubic model 

NEC(3), is the most powerful error correction test, no matter whether the model is linear 

or nonlinear. 

From the analysis of the power of the EG-test and the NEG-test, included from 

Table 9 to Table 14, we obtain the following conclusions: i) When the DGP is the linear 

EC model (10.1), the most powerful test is the t-ratio (t1) from the NEC model (10.3). 

The order of the power in these cases is t1 > t*1 > t*3 > t3. ii) When the DGP is NEC(3) 

model (9.2), the highest power is from t*3 in model (10.2), followed by t3 in model (10.3). 

iii) When the DGP is NEC(1,2,3) model (10.3), the three test statistic has good power but 

the order is t1 >  t*3 > t3 > t*1. In summary, when testing for cointegration using the residual 

estimated in the first-step of Engle and Granger (1987) approach, we recommend to start 

with the t-ratio of the pure NEC(3), t*3 , and if you do not reject the H of no cointegration, 

use the t-ratio, t1,  obtained by estimating the full cubic polynomial, NEC(1,2,3). 



For the analysis of the power of the NEC-test and the NEG-test we have the results 

are included from Table 3 to Table 8. 

Table 3. Power of 𝑡% 
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For the analysis of the power of the NEC-test and the NEG-test we have the results 

included from Table 9 to Table 14. 

Table 9. Power of 𝑡% 
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5. NONLINEAR MODELING OF MONEY DEMAND 

5.1. Nonlinear Long-Run Money Demand  

Based on the QTM, it is interesting is to address the question of which is the 

economic variable that moves together with velocity in the long-run (cointegration), so 

that after controlling for this variable, the monetary aggregate grow at the same rate as 

nominal output. The purpose of the subsection is to re-evaluate empirically this nonlinear 

cointegrated money demand equation with the new available information until year 2023. 

The cointegration relationship between the inverse velocity of money (𝑚 − 𝑝 −

𝑦)! and the opportunity cost measure 𝑅𝑁𝐴! is remarkable, as illustrated in Figure 1.C. 

This is supported with the cointegration tests done in the NEC representation estimated 

later. This translates that any permanent increase in the opportunity cost measure has a 

permanent increase in velocity and therefore a decrease in real money balances. Further, 

any deviation of the two series from their long-run relationship is transitory and 

constrained to disappear in the long run. To formally examine cointegration, we apply 

several cointegration tests: conventional tests (Engle-Granger and Johansen cointegration 

test), and linear and nonlinear cointegration tests derived previously from Granger’s 

Representation Theorem for NEC models to capture potential nonlinearities that standard 

methods may ignore. 

Before proceeding with the subsequent analysis of the inverse velocity of money 

and short-term interest rates, we verified the existence of a single cointegrating vector 

between the long-run equilibrium determinants of the QTM, 𝑋! 	= 	 {𝑚! , 𝑝! , 𝑦! , 𝑟𝑠!}. This 

is supported at 5% level of significance by the Johansen Unrestricted Cointegration Rank 

Test (Trace) statistic of a VECM(2) with a long-term constant yielded 72.31 for the 

"none" hypothesis and 33.39 for "at most one" cointegrating relationship. The impulse 

response analysis of this system is evaluated in the policy implications (Section 6). 

 Moreover, results support the unit income and price elasticity in the long run (𝛽0= 

1.00 and 𝛽1= 1.00). Notice that this condition rather than restrictive, it reduces the 

standard error of the regression and is aligned theoretical models regarding the liquidity 

preference function to be equal to unity in the long term when market frictions are no 

longer binding. Under these conditions, the difference between broad real money and 
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nominal output is driven by the short-run interest rate (𝑅𝑁𝐴!). Therefore, in the long-run 

velocity of circulation of money (𝑣!) moves together with short-term interest rates. 

The results of the cointegration tests are presented in Table 15. Overall, 

cointegration is strongly supported between the inverse velocity of money (𝑚 − 𝑝 − 𝑦)! 

and the opportunity cost measures (𝑅𝑆! and 𝑅𝑁𝐴!) in both levels and log specification. 

Notably, the Johansen test consistently identifies a single cointegration vector, confirming 

the suitability of a single-equation empirical modeling approach for money demand. 

While the standard Engle-Granger test detects cointegration at the 10% 

significance level only for the log-level specification with 𝑅𝑆!, Johansen cointegration 

test identifies a single cointegration vector across all cases at the same significance level. 

Furthermore, the previously derived parametric cointegration tests reinforce that that 

(𝑚 − 𝑝 − 𝑦)ₜ is nonlinearly cointegrated with the opportunity cost measure (𝑅𝑁𝐴!,	𝑅𝑆!) 

in a Log-Level form. As outlined earlier, when applying linear and nonlinear EG-tests and 

the NEG-test using residuals from the first step of the Engle-Granger (1987) approach, 

we recommend starting with the t-ratio of the NEG (𝑡2∗), following this order t*3 > t1 > t3 

> t*1.Thus, if the null hypothesis of no cointegration is not rejected, the next step should 

involve the t-ratio NEG (𝑡'), obtained from the full cubic polynomial NEC(1,2,3) model 

and so on. Following this procedure, we reject satisfactorily the null hypothesis of no 

cointegration at 10% level for all cases, except for nominal interest rates in logs (𝑟𝑠!). 

Table 15. Cointegration Tests (1877 – 2023) 

 Linear Cointegration Tests Nonlinear Cointegration Tests 

Variables EG EG (𝒕𝟏∗ ) Johansen NEG (𝒕𝟏) NEG (𝒕𝟑) NEG (𝒕𝟑∗ ) 

{(𝒎 − 𝒑 − 𝒚)𝒕 ; 𝑹𝑺𝒕} -3.12* -2.53 17.01** (1) 0.07 -2.47* -3.03 

{(𝒎 − 𝒑 − 𝒚)𝒕 ; 𝒓𝒔𝒕} -2.64 -2.91 16.60** (1) -0.72 -1.61 -2.55 

{(𝒎 − 𝒑 − 𝒚)𝒕 ; 𝑹𝑵𝑨𝒕} -2.23 -2.46 13.92* (1) -0.88 -2.20* -2.37 

{(𝒎 − 𝒑 − 𝒚)𝒕 ; 𝒓𝒏𝒂𝒕} -3.03 -3.19* 16.11** (1) -3.91* 1.88 -0.02 
Notes: Each cell presents the corresponding test-statistic values of the null hypothesis of no-cointegration (unit root) with and the 
level of rejection in asterisks (** if significant at 5%, * if significant at 10%): (i) Engle-Granger (EG) 𝑡𝑎𝑢-statistic from Eviews 13; 
(ii) Linear EG test EG(𝑡!∗) (iii) Johansen´s cointegration trace-statistic of a VECM(2), with dual constant term between 
(𝑚 − 𝑝 − 𝑦)#	and short-term interest rate measure, suggests (in parenthesis) the number of cointegration relationships at 10% level; 
(iv) Nonlinear EG test NEG(t1), (v) Nonlinear EG test NEG(t3) and (vi) Nonlinear EG test NEG(t*3). The 5% and 10% critical values 
(c.v.) for rejecting the null hypothesis of no cointegration are provided in Table 2, based on c.v. specifically generated for a sample 
size of T = 150. Source: Authors´ calculations.  

It is important to note that while these tests implicitly impose COMFAC 

restrictions, more general and robust analog tests, such as the EC-test and NEC-test can 
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be conducted within an error-correction framework. In this context, these tests are applied 

to the cubic-polynomial equilibrium correction model, Model A (see Table 19), for the 

demand of real money balances. The NEC (𝑡'∗) and NEC (𝑡') tests confirm the presence 

of a strong nonlinear equilibrium-correction relationship at the 5% significance level. 

Three nonparametric cointegration tests were also employed to address potential 

nonlinearities: the Record counting cointegration (RCC) test (Escribano, Sipols, and 

Aparicio 2006b), Induced-order cointegration based on Kolmogorov-Smirnov (KS) test 

(Escribano, Santos, and Sipols 2008) and Cramer-Von Misses (CVM) cointegration test 

(Escribano, Santos, and Sipols 2018). In all the cases, we reject the null hypothesis of no 

cointegration, see Escribano and Rodríguez (2023). 

Alternative cointegration relationships for UK money demand could be estimated 

using various functional forms (see Escribano and Rodriguez, 2023). Conventionally this 

relationship is specified as log-level functional form due to its theoretical and empirical 

implications. This specification relates to the theoretical framework described by Benati 

et al. (2021), where the equation is derived from a representative agent economy with 

labor as the only input, costly transactions (as in the Baumol-Tobin model), and 

exogenous stochastic productivity. Moreover, the log-level specification offers a key 

advantage: it allows for negative or near-zero interest rates (liquidity-trap scenarios), 

making it suitable for both empirical estimation and policy analysis. 

The inverse velocity (long-run money demand) and the opportunity cost measure 

(i.e. interest rates) are nonlinearly cointegrated in Equation (11.1) and (11.2) when 𝑢3! 

is I(0). Using traditional short-term interest rates (𝑅𝑆!), the Fully-Modified OLS (FM-

OLS, See Phillips and Hansen (1990)) estimates are as follows: 

(𝑚 − 𝑝 − 𝑦)! = −0.29 − 4.92	𝑅𝑆! + 𝑢3! 
              (0.043)     (0.79) (11.1) 

𝑇 = 147	(1877 - 2023)            𝑅,	= 0.46         100 ∗ 𝜎k = 16.92%  

As argued by Ericsson, Hendry, and Prestwich (1998), the empirical performance 

of this cointegration relationship can be further improved by incorporating an adjusted 

opportunity cost measure, 𝑅𝑁𝐴!, as in Equation (11.2):  
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(𝑚 − 𝑝 − 𝑦)! = −0.26 − 8.11	𝑅𝑁𝐴! + 𝑢3! 
          (0.032)     (0.82) (11.2) 

𝑇 = 147	(1877 - 2023)            𝑅,	= 0.63         100 ∗ 𝜎k = 13.91%  

The negative and significant semi-elasticity with respect to 𝑅𝑁𝐴! is aligned with 

the general predictions of the literature and plausible from the theoretical viewpoint. 

Equation (11.2) provides a more robust fit for the observed data and will serve as the 

foundation for the subsequent sections of this analysis. 

5.2. Nonlinear Equilibrium Correction Specifications 

We know by Granger’s representation theorem that if the variables are 

cointegrated there is an error-correction representation, in at least one of the equations of 

the system. Under linear cointegration the error-correction adjustment can be linear 

(Engle and Granger 1987; Johansen 1992) or nonlinear (Escribano 1985; 1986; 1987; 

2004; Escribano and Mira 2002, Saikkonen 2005; Escanciano and Escribano 2009; 

Kapetanios, Shin, and Snell 2006; Teräsvirta, Tjostheim, and Granger 2010; Kilic 2010, 

Hwan Seo 2011). Similarly, under nonlinear cointegration the error-correction model 

could be linear or nonlinear (Escribano 1986; 1985; 2004; Escribano and Pfann 1998; 

Escribano and Granger 1998; Chang, Park and Phillips 2001; Saikkonen 2005; Saikkonen 

and Choi 2004; Tjostheim 2020).  

Focusing on the exponential cointegration relationship expressed in log-level 

form, Equation (11.1) and (11.2), we consider the error term , stationary or I(0). The 

underlying concept is as follows, let 𝑢4! = 𝜌	𝑢4!+' + 𝜔! with 𝜌 < 1 and 𝜔! ∼ 𝐼(0) but 

not necessarily white noise,    

                                              (12a) 

.                                    (12b) 

A cubic polynomial error-correction adjustment, with the COMFAC restriction 

imposed, can be estimated in two stages.  First, we estimate equation (13) and use those 

residuals to estimate a nonlinear version of Engle and Granger (1987) test for non-

cointegration in the second equation (14) testing the null hypothesis of no-cointegration;	
𝐻5: 𝜌' = 𝜌, = 𝜌2 = 0, 

                                              (13) 
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                                (14) 

A generalization of (14) with a general nonlinear equilibrium-correction model 

with exponential cointegration with dynamics for the rate of growth of the real balances, 

rate of growth of real income, inflation and changes in interest rates, without imposing 

the COMFAC restriction, and including a vector ∆𝑋! of additional relevant control I(0) 

variables, like the long-term interest rates in rates, and the inflation rate , etc., are given 

in Equations (15a) and (15b),  

                                               (15a) 

                    (15b) 

where the errors terms ( ) of Equation (15) are white noise, 

𝜙6(𝐿), 𝜙0(𝐿), 𝜙1(𝐿), 𝛾4'(𝐿), 𝛾4,(𝐿), 𝛾42(𝐿) and a´(𝐿) are all finite order polynomials in 

the lag operator L of maybe different orders, with all the roots outside the unit circle, and 

where, for large values of |𝑢4!+'|,   𝜌'	𝑢4!+' + 𝜌,	𝑢4!+', + 𝜌2	𝑢4!+'2  is dominated by a 

linear function of 𝑢4!+' with negative slope (error-correcting), see Escribano (2004), 

Escribano and Mira (2002), and Saikkonen (2005). Equation (15b) could have errors 

terms ( ) having ARCH type heteroskedasticity as in Saikkonen (2005).  

In the literature on empirical applications of nonlinear error-correction models, 

this nonlinear functions have been estimated using different procedures; parametrically 

using cubic-polynomial equilibrium-correction specifications as in Escribano (1985, 

1986, 1987, 2004) and in   Hendry and Ericsson (1991), or Logistic Smooth Transition 

(STR) equilibrium-correction specifications (Teräsvirta and Eliasson 2001; Kapetanios, 

Shin, and Snell 2006; Kilic 2010 Teräsvirta, Tjostheim, and Granger 2010; Escribano and 

Torrado 2018), or by machine learning methods, like a Random Forest nonlinear 

equilibrium-correction specification, as was done in Escribano and Wang (2021). 

To make valid inferences when estimating NEC models, by OLS or by NLS, in a 

two-steps, it is important to validate De Jong (2001)`s orthogonality conditions. De Jong 

(2001) proved that while the super-consistency of the OLS and/or NLS estimators in the 

first step is beneficial, it does not guarantee the invariance of parameter estimates in the 
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second step, unless certain orthogonality conditions are satisfied6. Escribano and 

Rodríguez (2023), verified that these orthogonality conditions are satisfied for the UK 

and the US money demands. When they are not satisfied, we may need to consider joint 

estimation techniques of the long-run and short-run parameters by say NLS, which in the 

case of a cubic polynomial or STR models might not that simple.  

5.3. Nonlinear Money Demand Equations (1878 – 2023) 

The goal of this section is to, review and extend the estimation of competing UK 

real money demand models until 2023. We will evaluate their forecasting performance 

and their parameter stability, which are crucial issues for the use of money as an 

instrument in monetary policy.  

5.4. Previous Estimates and their Mechanistic Extension 

Money demand relationships have been a critical and persistent point for 

economists for over half a century, as highlighted in Table B.1. The development of 

nonlinear (cubic-polynomial) error-correction models by Escribano (1985, 1986, 1987), 

together with a few suggestions from Longbottom and Holly (1985), allowed Hendry and 

Ericsson (1991) to produce a better equilibrium-correction specification of the UK money 

demand, based on cubic polynomials. Afterwards,  Ericsson, Hendry, and Prestwich 

(1998) extended the analysis until 1993, incorporating an interesting measure of 

opportunity cost (𝑅𝑁𝐴!). Subsequently, Teräsvirta and Eliasson (2001) refined these 

previous models of the demand for broad money in the UK by means of smooth transition 

regression (STR). Similarly, Escribano (2004) encompassed the analysis to new 

parametric adjustments (cubic polynomials and rational polynomials), and 

semiparametric (smoothing splines) NEC models with stable results for the extended 

sample period considered, from 1878 to 2000.  

In particular, the identification of the oportunity cost measures such as 𝑅𝑁!,, 

introduced by Friedman and its refined version, 𝑅𝑁𝐴!, proposed later by Ericsson, 

Hendry and Prestwitch (1998) is crucial to address the mispredictions inherent in 

historical spliced monetary aggregates, as discussed in  Escribano and Rodriguez (2023). 

In this context, we focus on the most recent empirical models in the literature that 

 
6 In general, those conditions are satisfied if we include a constant term when we estimate the cointegrating 
equation in the first step. 
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incorporate this contribution—specifically, the models of Ericsson, Hendry, and 

Prestwich (1998), Teräsvirta and Eliasson (2001) and Escribano (2004).  

The replication and mechanic extension of these empirical competing models to 

2023, as presented in Table 16, reveal noteworthy findings. The estimated equations 

appear to be congruent and well specified within the sample (see Figure 4), given the 

diagnostic statistics, even after extending mechanically the sample period by more than 

20 years. This highlights the robustness and significance of their original specification. 

For the mechanical extension of the model up to 2023, two periods of excess 

money demand were identified. The first period corresponds to the financial crisis 

(𝐷𝐶𝑅𝐼𝑆𝐼𝑆!). This dummy takes a value of 1 from 2000 to 2007, -1 from 2008 to 2011, 

and 0 otherwise. It reflects a period of excess money demand before the subprime 

mortgage crisis, which was subsequently corrected by an equivalent excess reduction in 

the years following the crisis. The second period of excess demand is associated with the 

COVID-19 pandemic in 2020, represented by the dummy variable 𝐷𝐶𝑂𝑉𝐼𝐷!, which takes 

a value of 1 in 2020 and 0 otherwise. This excess demand impacted the economy with a 

two-year lag, manifesting in 2022. During this period, the relaxation of economic 

restrictions imposed to control the pandemic was not accompanied by a proportional 

increase in money demand or any other variables within the model. Adapting the model 

to new economic environments is essential. Therefore, the inclusion of these exogenous 

dummy variables is necessary to ensure the robustness and coherence of the models when 

extending them over time. 

 
Figure 4. UK Estimated Extended Nonlinear Error-Correction Models (1878 – 2023) 

Notes: Figure plots the actual values ∆(𝑚 − 𝑝)#, fitted values ∆(𝑚 − 𝑝)#8 	and residuals 𝜀(̂# of extended error-correction 
models presented in Table 16. Source: Authors’ calculations. 
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Table 16. UK Competing Mechanical Extended Money Demand Models (1878 – 2023) 
 Dependent variable: 	∆(𝑚 − 𝑝)# 

Regressors Ericsson, Hendry, 
and Prestwich (1998) 

Teräsvirta and Eliasson (2001) 
Escribano (2004) 

LSTR(1, 𝑓(𝑢.$#%!)) LSTR(2, 𝑓(∆𝑦#)) 

 Original Extended Original Extended Original Extended Original Extended 
Linear components 
∆(𝑚 − 𝑝)#$% 0.48 

(0.07) 
0.47 

(0.051) 
0.52 

(0.051) 
0.52 

(0.057) 
0.83 
(0.10) 

0.81 
(0.11) 

0.67 
(0.078) 

0.52 
(0.070) 

∆(𝑚 − 𝑝)#$) - - -0.15 
(0.040) 

-0.12 
(0.049) 

-0.16 
(0.039) 

-0.15 
(0.040) 

-0.24 
(0.063) 

-0.11 
(0.060) 

∆)(𝑚 − 𝑝)#$) -0.10 
(0.04) 

-0.09 
(0.041) - - - - -0.09 

(0.042) 
-0.059 
(0.043) 

∆𝑝# -0.62 
(0.07) 

-0.62 
(0.044) 

-0.66 
(0.044) 

-1.05 
(0.21) 

-0.62 
(0.040) 

-0.63 
(0.044) 

-0.64 
(0.042) 

-0.62 
(0.045) 

∆𝑝#$% 0.40 
(0.07) 

0.43 
(0.049) 

0.46 
(0.042) 

0.45 
(0.049) 

0.64 
(0.069) 

0.66 
(0.099) 

0.58 
(0.077) 

0.47 
(0.075) 

∆𝑝#$) - - - - - - -0.15 
(0.059) 

-0.044 
(0.060) 

∆𝑟𝑛𝑎# -0.020 
(0.006) 

-0.014 
(0.0052) 

-0.022 
(0.005) 

-0.012 
(0.005) 

-0.015 
(0.005) 

-0.013 
(0.005) 

-0.02 
(0.005) 

-0.015 
(0.005) 

∆)𝑟𝑙# -0.041 
(0.019) 

-0.038 
(0.0076) - - - - -0.040 

(0.013) 
-0.036 
(0.008) 

∆)𝑟𝑙#$) - - - - - - -0.030 
(0.015) 

-0.015 
(0.012) 

(𝐷1 + 𝐷3)# 0.039 
(0.006) 

0.033 
(0.0057) 

0.037 
(0.005) 

0.030 
(0.006) 

0.035 
(0.005) 

0.034 
(0.006) 

0.030 
(0.005) 

0.033 
(0.0058) 

𝐷4# ∗ ∆𝑟𝑠# 0.10 
(0.042) 

0.083 
(0.029) 

0.07 
(0.024) 

0.086 
(0.031) 

0.12 
(0.022) 

0.10 
(0.027) 

0.080 
(0.027) 

0.071 
(0.028) 

𝐷𝐶# 0.052 
(0.010) 

0.059 
(0.0074) 

0.061 
(0.007) 

0.062 
(0.008) 

0.071 
(0.007) 

0.068 
(0.007) 

0.050 
(0.008) 

0.061 
(0.008) 

𝐷𝐶𝑅𝐼𝑆𝐼𝑆# - 0.028 
(0.005) - 0.025 

(0.006) - 0.029 
(0.005) - 0.028 

(0.005) 

𝐷𝐶𝑂𝑉𝐼𝐷#$)  - 0.09 
(0.024) - 0.074 

(0.010) - 0.15 
(0.026) - 0.085 

(0.027) 

𝑢K*#$% - - -0.17 
(0.022) 

-0.017 
(0.057) 

0.092 
(0.046) 

0.11 
(0.07) - - 

Constant 0.004 
(0.002) 

0.007 
(0.002) - - - - 0.008 

(0.002) 
0.009 
(0.002) 

Nonlinear components 

(𝑢K*#$% − 0.2)𝑢K*#$%
) -2.26 

(0.46) 
-1.42 
(0.21) - - - - -2.02 

(0.38) 
-1.34 
(0.21) 

𝑓(∗) ∗ ∆(𝑚 − 𝑝)#$% - - - - -0.49 
(0.11) 

-0.46 
(0.13) - - 

𝑓(∗) ∗ 𝑢K*#$% - - -0.62 
(0.23) 

-0.019 
(0.059) 

-0.19 
(0.048) 

-0.21 
(0.071) - - 

𝑓(∗) ∗ ∆𝑝# - - 0.38 
(0.18) 

0.43 
(0.21) - - - - 

𝑓(∗) ∗ ∆𝑝#$% - - - - -0.34 
(0.065) 

-0.35 
(0.10)   

𝑓(∗) ∗ ∆)𝑟𝑙# - - -0.24 
(0.081) 

-0.059 
(0.009) 

-0.072 
(0.018) 

-0.078 
(0.009) - - 

𝑓(∗) ∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 - - 0.21 
(0.007) 

0.011 
(0.002) 

0.016 
(0.002) 

0.016 
(0.003) - - 

Sample 1878-1993 1878–2023 1878-1993 1878–2023 1878-1993 1878–2023 1878-2000 1878–2023 

𝑅& 0.87 0.84 0.90 0.85 0.90 0.88 0.87 0.85 
100 ∗ 𝜎. 1.62% 1.77% 1.48% 1.77% 1.43% 1.59% 1.61% 1.74% 

Misspecification test P-value P-value P-value P-value 
Autocorrelation (2) 0.17 0.73 0.43 0.61 0.94 0.95 0.15 0.51 

RESET (1) 0.31 0.73 - - - - 0.43 0.17 
ARCH (1) 0.36 0.30 0.44 0.63 0.96 0.58 0.62 0.19 

Huber-White 0.57 0.09 0.56 0.80 0.68 0.63 0.21 0.11 
Normality 0.83 0.79 0.19 0.89 0.94 0.70 0.91 0.46 

Notes: Each column of the short-run equations presents coefficients obtained from separate regressions, with standard errors provided in parentheses. The 
original models’ results are retrieved from papers cited above. All reported statistical tests are expressed as p-values. Below are the details of the models: 

(i) All extended models used two-step cointegrating residuals by FM-OLS: 𝑢)!"#$ = (𝑚 − 𝑝 − 𝑦)"#$ + 0.26 + 8.12	𝑅𝑁𝐴"#$. Original models 
employed following residuals: 𝑢)!"#$ = (𝑚 − 𝑝 − 𝑦)"#$ + 0.34 + 6.30	𝑅𝑁𝐴"#$ for Ericsson, Hendry, and Prestwich (1998), 
𝑢)!"#$ = (𝑚 − 𝑝 − 𝑦)"#$ + 0.32 + 6.67	𝑅𝑁𝐴"#$	for Teräsvirta and Eliasson (2001) and 𝑢)!"#$ = (𝑚 − 𝑝 − 𝑦)"#$ + 0.35 + 6.16	𝑅𝑁𝐴"#$for 
Escribano (2004). 

(ii) Teräsvirta and Eliasson (2001)`s LSTR(1) with transition function 𝑓(𝑢)!"#$) = A1 + expE𝛾	(𝑢)!"#$ − 𝑐) 𝜎)%&!"#$⁄ JK#$, estimated original model 
parameters by NLS are 𝛾 = −2.54		and 𝑐 = 0.19 and extended parameters are 𝛾 = −9.26		and 𝑐 = 0.27. 

(iii) Teräsvirta and Eliasson (2001)`s LSTR(2) with transition function 𝑓(∆𝑦") = A1 − expE𝛾	(∆𝑦" − 𝑐$)((∆𝑦" − 𝑐') 𝜎)∆)"
'N JK#$,	estimated original model 

parameters by NLS are 𝛾 = −2.68, 𝑐$ = 0.011 and 𝑐' = 0.052	and extended parameters are 𝛾 = −1.67, 𝑐$ = 0.010 and 𝑐' = −0.046. 
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5.5. Selected Nonlinear Equilibrium-Correction (NEC) Models for the Real 
Money Demand of UK 

While it is true that extended model’s performance is fairly suitable, purely 

mechanical extensions can result in incoherent economic representations and lead to 

predictive failures (Ericsson, Hendry, and Prestwich 1998). In this context, we 

empirically re-evaluate these extended nonlinear cointegrated money demand equations 

and propose selected versions that incorporate newly available information up to 2023. 

The selected model versions are summarized in Table 17. Model A is a revaluation 

of the NEC models proposed by Ericsson, Hendry, and Prestwich (1998) and Escribano 

(2004), incorporating a nonlinear adjustment toward equilibrium through a flexible 

polynomial specification (NEC – Cubic polynomial). Models B and C correspond to the 

smooth transition regressions (STR) of Teräsvirta and Eliasson (2001). Model B utilizes 

a first-order logistic smooth transition specification, with the nonlinear equilibrium-

correction term as the transition variable (NEC - LSTR(1, 𝑓(𝑢k3!+'))). In contrast, Model 

C captures the nonlinear dynamics through a second-order logistic smooth transition 

regression, using the growth rate of real income as the transition variable (EC - LSTR(2, 

𝑓(∆𝑦!)). Finally, one might hypothesize the existence of a money demand equation that 

integrates the nonlinear characteristics of Model A and C into a single framework, that is 

Model D: a second-order logistic smooth transition regression model, using the growth 

rate of real income as the transition variable (LSTR(2, 𝑓(∆𝑦!)), combined with nonlinear 

equilibrium specfied as a cubic polynomial error-correction term. 

STR models are estimated using nonlinear least squares (NLS), a method sensitive 

to initial conditions due to its nonlinear optimization nature. To ensure convergence, 

initial parameters are obtained from the original models of Teräsvirta and Eliasson (2001). 

In contrast, the cubic-polynomial specification in Model A, estimated via ordinary least 

squares (OLS), avoids this estimation concern, requires fewer parameters, and allows for 

direct interpretation of coefficients. 

All selected equations exhibit consistency with plausible coefficient signs and 

magnitudes and are well-specified within the sample (see Figure 5), as supported by 

diagnostic statistics and subsequent parameter constancy tests. Furthermore, the three 

selected empirical models exhibit a high goodness-of-fit to the historical demand for real 

money balances and explain over 85% of the variability in the data, surpassing the in-

sample performance of their extended model counterparts. 
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Table 17. Selected Nonlinear Money Demand Models of the UK (1878 – 2023) 
 Dependent variable: 	∆(𝑚 − 𝑝)P 

Regressors (a) NEC - Cubic pol. (b) NEC - LSTR(1) (c) EC - LSTR(2) (d) NEC - LSTR(2) 

Linear components 
∆(𝑚 − 𝑝)PQR 0.49 (0.049) 0.52 (0.051) 0.75 (0.089) 0.75 (0.095) 
∆(𝑚 − 𝑝)PQS -0.17 (0.041) -0.21 (0.042) -0.17 (0.040) -0.15 (0.038) 
∆S𝑝P -0.58 (0.042) -0.67 (0.065) -0.62 (0.046) -0.61 (0.043) 
∆𝑝PQR -0.16 (0.034) -0.16 (0.036) - - - - 
∆𝑟𝑛𝑎P -0.016 (0.0047) -0.016 (0.0048) - - -0.014 (0.0045) 
∆𝑟𝑛𝑎P + ∆𝑟𝑛𝑎PQR - - - - -0.01 (0.0029)   
∆S𝑟𝑙P -0.043 (0.0074) -0.035 (0.0079) - - - - 
∆S𝑟𝑙PQ' -0.039 (0.0083) -0.037 (0.0085) - - - - 
(𝐷1 + 𝐷3)# 0.034 (0.0053) 0.035 (0.0053) 0.036 (0.0051) 0.035 (0.0049) 
𝐷4# ∗ ∆𝑟𝑛𝑎# 0.071 (0.025) 0.082 (0.026) 0.093 (0.025) 0.075 (0.025) 
𝐷𝐶# 0.064 (0.0068) 0.062 (0.0069) 0.070 (0.0075) 0.072 (0.0072) 
𝐷𝐶𝑅𝐼𝑆𝐼𝑆# 0.027 (0.0049) 0.030 (0.0052) 0.028 (0.0051) 0.031 (0.0049) 
𝐷𝐶𝑂𝑉𝐼𝐷#$)  0.11 (0.022) 0.11 (0.023) 0.11 (0.025) 0.14 (0.026) 
𝑢3TPQR - - -0.16 (0.020) 0.090 (0.047) 0.097 (0.049) 
Constant 0.008 (0.002) - - - - - - 

Nonlinear components 
(𝑢K*#$% − 0.2)𝑢K*#$%

) -1.47 (0.19) - - - - -0.95 (0.27) 
𝑓(∗) ∗ ∆(𝑚−𝑝)𝑡−1 - - - - -0.43 (0.11) -0.37 (0.12) 
𝑓(∗) ∗ ∆2𝑝𝑡 - - 0.14 (0.091) - - - - 
𝑓(∗) ∗ ∆𝑝𝑡−1 - - - - -0.30 (0.043) -0.29 (0.043) 
𝑓(∗) ∗ ∆2𝑟𝑙𝑡 - - - - -0.074 (0.0099) -0.069 (0.0097) 
𝑓(∗) ∗ ∆2𝑟𝑙𝑡−3 - - - - -0.028 (0.013) - - 
𝑓(∗) ∗ 𝑢P𝑅𝑡−1 - - -0.13 (0.23) -0.19 (0.053) -0.15 (0.057) 
𝑓(∗) ∗ 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡 - - 0.069 (0.021) 0.017 (0.0028) 0.013 (0.0028) 
T 146 146 146 146 
𝑅S 0.87 0.88 0.88 0.89 
100 ∗ 𝜎3 1.63% 1.61% 1.57% 1.53% 
BIC -5.02 -4.93 -4.95 -5.01 
Nº of parameters 14 18 19 19 
Misspecification test P-value P-value P-value P-value 
Autocorrelation (2) 0.62 0.95 0.77 0.65 
RESET (1) 0.66 - -  
ARCH (1) 0.52 0.37 0.42 0.59 
Huber-White 0.55 0.57 0.60 0.68 
Normality 0.96 0.86 0.52 0.52 
Notes: Each column of the short-run equations presents coefficients obtained from separate regressions (estimated by OLS for Model A, 
and by NLS for the rest), with standard errors in parentheses. All reported statistical tests are expressed as p-values. All models used two-
step cointegrating residuals estimated by FM-OLS: 𝑢.$#%! = (𝑚 − 𝑝 − 𝑦)#%! + 0.26 + 8.12	𝑅𝑁𝐴#%!. Below are the details of the models: 
i) Selected NEC - LSTR(1) with transition function 𝑓(𝑢.$#%!) = =1 + expA𝛾	(𝑢.$#%! − 𝑐) 𝜎.'(!"#$⁄ EF%!, estimated model parameters by 

NLS are 𝛾 = −4.11	(1.49) and 𝑐 = 0.11 (0.021). 
ii) Selected LSTR(2) with transition function 𝑓(∆𝑦#) = =1 − expA𝛾	(∆𝑦# − 𝑐!)((∆𝑦# − 𝑐&) 𝜎.∆*"

&⁄ EF%!,	estimated model parameters by 
NLS are 𝛾 = −1.99 (0.80), 𝑐! = 0.015 (0.004) and 𝑐& = −0.051 (0.012) for linear error-correction case (Model C) and estimated 
model parameters by NLS are 𝛾 = −1.86 (0.80), 𝑐! = 0.012 (0.0057) and 𝑐& = −0.046 (0.014) for NEC case (Model D). 
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Figure 5. UK Estimated Selected Nonlinear Money Demand Models (1878 – 2023) 

Notes: Figure plots the actual values ∆(𝑚 − 𝑝)#, fitted values ∆(𝑚 − 𝑝)#8 	and residuals 𝜀(̂# of selected nonlinear money 
demand models presented in Table 17. Source: Authors’ calculations.  

In particular, parameter constancy, which has been a critical and persistent point in 

money demand models not only from a statistical perspective but also for economic policy 

evaluation, is evaluated for the NEC – Cubic polynomial, Model A using recursive least 

squares (RLS), as shown in  Figure B.2. This stability test can be interpreted as an 

encompassing test of the additional information included in the forecast or extended 

period. The results demonstrate that parameter constancy is remarkably robust throughout 

the sample period, even during the "missing money" episodes of the 1980s, when many 

traditional relationships broke down. Recursive estimates for the UK, available since 

1980, closely align with those presented in the main tables. While occasional deviations 

are observed, notably in 1980, 1991, 2000 and 2022, one-step residual diagnostics do not 

indicate persistent instability. The CUSUM and CUSUM square statistics confirm the 

cumulative sum of recursive residuals stays within the 5% significance interval. Overall, 

these findings advocate the constancy and well-specification of the nonlinear equilibrium-

correction Model A over more than 140 years of data. 

Short-run money demand relationships can be satisfactorily modeled with only a 

few key variables, provided non-linearities and exogenous money demand shocks are 

accounted for and opportunity cost of money holdings is measured correctly. In all 
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selected models the primary determinants of real money balances are the lagged level of 

real money balances themselves, the acceleration of inflation (∆,𝑝!), the previous period's 

inflation level (∆𝑝!+'), and opportunity cost measures such as ∆𝑟𝑛𝑎! and the long-term 

interest rate (∆,𝑟𝑙!). It is noteworthy that income growth (∆𝑦!) plays no direct role in 

short-term dynamics7, serving only indirectly as an indicator of parameter changes 

captured by the LSTR(2, 𝑓(∆𝑦!)) in Model C and D. The specification of interest rates in 

logarithmic form  is not trivial; it is motivated not only by its theoretical consistency with 

the Baumol-Tobin model but also by its empirical performance. Using logarithms 

provides linear growth rate approximations that exhibit lower volatility compared to first 

differences in levels, making them better suited to capturing short-term fluctuations in 

money demand, as illustrated in Figure B.3.8  

Following the extended models9, we avoid using the dummy variable described 

by Friedman and Schwartz (1982) as a "liquidity preference shift", but we retain the 

others. The variable (𝐷1 + 𝐷3)! serves as a dummy for both World Wars (WWI: 1914–

1918 and WWII: 1939–1945), 𝐷4! accounts for the introduction of Competition and 

Credit Control during 1971–1975, and 𝐷𝐶! represents the deregulation episodes spanning 

1971–1975 and 1986–1989. Notably, in this specification, the 𝐷4! now multiplies the 

growth rate of ∆𝑟𝑛𝑎 for economic consistency with the opportunity cost measure 

specified in all models. The dummies for 𝐷𝐶𝑂𝑉𝐼𝐷!+, and 𝐷𝐶𝑅𝐼𝑆𝐼𝑆!, previously 

explained as periods of excess money demand, are also retained. More importantly, the 

identification of these exogenous episodes of excess money demand—unexplained by the 

variables within each model—can serve as indicators of inflationary episodes, as 

demonstrated later. This feature can be captured effectively by any of the models 

presented previously. 

The short-run relationship between money demand and inflation (∆𝑝!) is 

consistent with economic theory. As the literature points out, the growth of real balances 

may decrease as inflationary pressures shape the actual and expected demand for money 

 
7 Income growth (∆𝑦PQV) and its lags up to four periods (k = 0, 1, 2, 3, 4) were found to be statistically 
insignificant across all selected models of Table 17, thus rejecting the common factor (COMFAC) 
restrictions associated with the long-run unitary income elasticity. 
8 Notably, these specifications can be adapted to a negative interest rate framework if such a scenario arises 
in the data, as recently demonstrated by Escribano and Rodríguez (2023). 
9 See Attfield, Demery and Duck (1995), Friedman and Schwartz (1982), Hendry and Ericsson (1991), 
Hendry and Mizon (1978), and Lubrano, Pierse and Richard (1986) for details on the introduction of these 
dummy variables (𝐷1P, 𝐷3P, 𝐷4P and 𝐷𝐶P). 
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balances, thus reducing the real return on physical assets (Friedman and Schwartz 1982). 

Theoretically the associated inflation’s cost tends to increase with the level of inflation, 

reinforcing the negative effect of inflation at high levels on the quantity of money 

demanded. However, we do not find empirical evidence of this kind of behavior in the 

UK demand for real money balances10.  

If the holding of money is viewed as part of a portfolio decision process, the 

optimal level of cash balance may be determined not by only by single interest rates but 

by the entire term structure (Heller and Khan 1979; Brand and Cassola 2004). The 

estimated coefficients and signs on the growth of the short-term opportunity cost measure 

(∆𝑟𝑛𝑎!) and the long-term interest rates (∆,𝑟𝑙!) corroborate this kind of behavior, which 

is well described by the time stucture theory of, aligning with Friedman (1977)’s term 

structure theory. According to this theory, changes in the term structure affect not only 

the current opportunity cost of holding money but also agents' expectations of future 

interest rates. An increase in long-term interest rates, while short-term interest rates 

remain unchanged, may exacerbate the upward trend in the liquidity ratio by encouraging 

substitution from long-term to short-term securities, thus inducing a downward effect on 

the demand for money. 

Modeling nonlinearities in the money demand function is crucial. The estimated 

nonlinear functional forms employed in the selected models are illustrated in Figure 6: 

(a) the cubic-polynomial error-correction of Model A, (b) the LSTR(1, 𝑓(𝑢k3!+')) 

transition function of Model B, (c) the LSTR(2, 𝑓(∆𝑦!)) transition function of Model C 

and D and (d) the parameter-changing cubic-polynomial error-correction of Model D. 

The cubic-polynomial specification in Model A, denoted as 𝑃𝑂𝐿	(𝑢4!) =

−1.47	(𝑢k3!+' − 0.2)𝑢k3!+'
,, provides a flexible parametric form to capture multiple 

equilibrium error-correction representations. The linearity test of the error-correction 

term11 of Model A also supports a nonlinear error-correction (NEC) representation with 

asymmetric adjustment towards multiple equilibria (see linearity test of ) with a similar 

dynamic to that proposed by Escribano (1985, 1986, 2004). In Figure 6, depicts this  

 
10 To test the existence of this non-linear effect we introduce the square of the inflation rate up to 2 
lags	(𝑖. 𝑒.		𝛽R∆𝑝PS + 𝛽S∆𝑝PQRS + 𝛽'∆𝑝PQSS ) in NEC Model A and test the null hypothesis H0: 𝛽R = 𝛽S = 𝛽' =
0, which is failed to be rejected at conventional levels of significance (F-stat(3,129)=0.048). 
11 The LM linearity test 𝑢3TPQR contrast the null hypothesis of linearity in the error-correction term against 
the alternative of a cubic-polynomial error-correction model. 
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Figure 6. Nonlinear Components of Selected Money Demand Models 
Notes: Nonlinear components of each selected model in Table 17 are presented: (a) the cubic-polynomial error-
correction 𝑃𝑂𝐿(𝑢K+#$%) with the equilibrium range (i.e. 𝑃𝑂𝐿(𝑈) = 0) shaded and its first-order derivative; (b) the 
LSTR(1,	𝑢K*#$%) transition function (𝜃), the estimated nonlinear error-correction term f(u) and its first derivative; (c) 
the LSTR(2,	∆𝑦#) transition function (𝜃) and its equivalent ESTR(1,	∆𝑦#), the estimated error-correction term f(u, 𝜃) 
given selected 𝜃 values and the income growth (∆𝑦#) transition regime, with the red line indicating the transition 
function's minimum value; (d) the LSTR(2,	∆𝑦#) transition function (𝜃), the cubic-polynomial error-correction term 
𝑃𝑂𝐿(𝑢K+#$%, 𝜃) and its first derivative given selected 𝜃 values. For all STR models, transition regime is shaded. Source: 
Authors’ calculations. 
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 nonlinear dynamics, with the horizontal axis showing long-run cointegrated residuals 

𝑢k3!+' = (𝑚 − 𝑝 − 𝑦)!+' + 0.26 + 8.12	𝑅𝑁𝐴!+'	and the vertical axis showing the 

corresponding cubic-polynomial function. The nonlinear structure suggests that 

deviations farther from the equilibrium range undergo larger corrections, consistent with 

the theoretical buffer-stock (Gandolfi and Lothian 1976; Cuthbertson and Taylor 1987) 

and target-bounds models (Miller and Orr 1966; Akerlof 1979; Mishkin 1995). Threshold 

parameters for the equilibrium ranges (𝜏' = 0 and 𝜏, = 0.2) remain consistent with 

findings in Ericsson, Hendry, and Prestwich (1998) and Escribano (2004), reinforcing the 

robustness of the estimated nonlinearity.  

As suggested by Teräsvirta and Eliasson (2001), this nonlinear dynamics can be 

approximated using a logistic smooth transition regression model, (LSTR(1, 𝑓(𝑢k3!+'))) 

as in Model B. The logistic transition occurs within a range closely resembling the 

equilibrium range of the cubic polynomial in Model A (see Figure 6), which is 

approximately between 𝜏' = −0.05	and 	𝜏, = 0.24. In the transition from one regime to 

another marks the impacts of inflation acceleration and the error-correction term. The 

adjustment to equilibrium is faster (-0.29) the impact of inflation acceleration diminishes 

to -0.53 when deviations are above equilibrium range (𝑢k3!+' > 0.24, i.e., θ = 1) occur, 

and. Conversely, when deviations fall below equilibrium range (𝑢k3!+' > −0.05, i.e., θ = 

1), inflation acceleration has a greater impact (-0.67), while the effect of the error 

correction term decreases to -0.19. This dynamic is noteworthy, as deviations from 

equilibrium also play a significant role in determining the growth of prices, as will be 

shown later. 

Nonlinear dynamics can also be modeled using a time-varying parameter 

framework, such as in Model C and D, LSTR(2, 𝑓(∆𝑦!)), where income growth indirectly 

drives parameter changes. In these specifications, the transition occurs smoothly within 

income growth rates of approximately [-7%, +4%], which align with typical values 

observed in the sample (see Figure 6). 

The LSTR(2) transition function can alternatively be expressed as a simpler first-

order exponential function, ESTR(1), which requires fewer parameters for estimation 

(e.g., only one threshold), as shown in Figure 6 for Model C. The primary distinction is 

that LSTR(2) estimates inflection points (i.e., where the second derivative equals zero), 

whereas ESTR(1) identifies critical minimum points (where the first derivative equals 
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zero), of the transition function 𝜃 = 𝑓(∗). For instance, the estimated value 𝑐₁ = −1.7% 

indicates the income growth level at which the transition function reaches its minimum. 

Despite these differences, both specifications yield comparable results, with LSTR(2) 

exhibiting slightly superior fit to the data. For this reason, LSTR(2) was chosen as the 

transition function for Model C and D. 

Finally for Model D, what stands out is its ability to adjust the cubic nonlinear 

equilibrium across the range of values where the equilibrium is defined—that is, when 

the cubic polynomial equals zero (POL (U)=0) — depending on income growth level. 

This adjustment occurs smoothly, as illustrated in Figure 6 for selected values of the 

transition function (θ): 𝜃 = 0.7 corresponds to ∆𝑦! values between approximately -5.8% 

and 1.9%, 𝜃 = 0.85 corresponds to ∆𝑦! values between approximately -6.3% and 2.6%., 

and 𝜃 = 1 occurs when ∆𝑦! is below -7.8% or above 4.5%. As income growth deviates 

further from the transition function's minimum (𝑐' ≈ −1.6%), the cubic polynomial 

evolves from a multiple equilibrium to a single equilibrium model at 𝑢7K! = 0 when 𝜃=1. 

In the case of the estimated STR models, the inclusion of non-constant parameters 

that vary with the transition variable can complicate the economic interpretation of the 

model. For Model C and D specifically, the coefficients of the error-correction term 

(𝑢k3!+') and past inflation (∆𝑝!+') become statistically insignificant near the 𝑐₁	 =

	−1.7%, and the limited number of observations at the extremes of the transition range 

prevents proper evaluation of the coefficients in these regions. Given these 

considerations, simpler representations as the NEC Model A emerges may be a more 

parsimonious alternative for approximating nonlinearities without complicating the 

interpretation of the parameters. 

5.6. Searching for Model Encompassing and Out-of-Sample Forecasting 

A final step of the model’s evaluation is to assess the predictive power of the 

estimated error-correction models presented in this paper and make a stress test (see Table 

17). Since no statistical test in-sample will manifest predictive failure post-sample, 

forecast evaluation is performed on the basis of their forecast performance out of sample. 

Hence, three selected and new models have been re-estimated from 1878 to 2002 and 

results of the out-of-sample dynamic forecasting of the growth of real money balances 

for the last 20 observations of the sample (2003 – 2023) are plotted for each model in 

Figure 7. 
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Figure 7. UK Error-Correction Models Out-of-Sample Forecast (2003 - 2023) 
Notes: Figure plot the results of the out-of-sample dynamic forecasting of the growth of real money balances ∆(𝑚 − 𝑝)# 

of the last 20 observations of the sample (2003 - 2023) for the models presented in Table 17. Two forecast standard 

errors plus or minus the forecasted values are considered to construct the confidence interval. Source: Authors’ 

calculations. 

Table 18. UK Out-of-Sample Forecast Evaluation of the last 20 years (2003 – 2023) 

Forecast results (a) NEC model (b) LSTR(1, 𝑓(𝑢3TP)) (c) LSTR(2, 𝑓(∆𝑦P)) (d) LSTR(2, 𝑓(∆𝑦P)) 

RMSE 0.036 0.042 0.040 0.042 
MAE 0.023 0.031 0.027 0.024 

MAPE 112.5 190.8 103.6 167.2 
Theil U1 0.31 0.36 0.34 0.35 
Theil U2 0.43 0.69 0.51 0.5 

Diebold-Mariano 
test (HLN adjusted) 

(a) vs. (b) = 0.00 (b) vs. (c) = 0.57 (a) vs. (c) = 0.34 (a) vs. (d) = 0.33 
- (b) vs. (d) = 0.97 - (c) vs. (d) = 0.47 

Combination test 
(2003 – 2023) 0.000 0.006 0.000 0.000 

Combination test 
(1878 – 2023) 0.003 0.000 0.602 0.466 

Notes: Each column reports the estimated measures of forecast accuracy: Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), Symmetric Mean Absolute Percentage Error (SMAPE), Theil Bounded and Unbounded 
Inequality Coefficients (Theil U1 and U2) of a dynamic out-of-sample forecast (2001 - 2023) for each of the considered 
nonlinear error-correction models. The Diebold-Mariano test (Diebold and Mariano 1995) is presented as the p-value of 
its corresponding two-tailed test, evaluating whether both forecasts have the same accuracy based on RMSE terms. The 
combination test (Chong and Hendry 1986; Timmermann 2006) test the null  hypothesis that forecast i includes all 
information contained in others and is presented as the p-value for the out-of-sample forecast and full sample case. 
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All four models show out-of-sample forecasts closely aligned with actual money 

levels over the forecasted sample. Forecast errors, measured by RMSE and MAE, exhibit 

similar values across models, with NEC Model A performing best in absolute terms (see 

Table 18). However, Diebold-Mariano tests show a statistically significant improvement 

only relative to Model B. Additionally, the Combination Test rejects the null hypothesis 

for all models12, suggesting that no single forecast fully encompasses the information 

provided by others. When considering in-sample dynamic forecasts for the full sample 

(1878 – 2023), the forecast encompassing test suggests that the LSTR(2) models, C and 

D, incorporate the forecast information of the others at 10% level of significance. Among 

these, NEC LSTR(2), Model D, achieves the lowest RMSE (0.015) in absolute terms. 

However, the predictive gains of these models are not statistically significant at the 5% 

level, as indicated by the Diebold-Mariano test. This result is consistent with the 

observational equivalence of all models in terms of predictive power. 

 
Table 19. Parsimonious NEC Money Demand Model of the UK (1878 – 2023): Cubic-
polynomial equilibrium -correction, Model A 

∆(𝑚 − 𝑝)! = 0.49	∆(𝑚 − 𝑝)!LM − 0.17	∆(𝑚 − 𝑝)!LN − 0.58	∆N𝑝! − 0.16	∆𝑝!LM − 0.016	∆𝑟𝑛𝑎! 
(0.049)                              (0.041)                             (0.042)              (0.034)                 (0.0047)              

−0.043	∆N𝑟𝑙! 	− 0.039	∆N𝑟𝑙!LO − 1.47	(𝑢7K!LM − 0.2)𝑢7K!LM
N + 0.034	(𝐷1 + 𝐷3)!  

   (0.0074)                  (0.0083)                    (0.19)                                               (0.0053)               

+0.071	(𝐷4! ∗ ∆𝑟𝑛𝑎!) + 	0.064𝐷𝐶! + 	0.027	𝐷𝐶𝑅𝐼𝑆𝐼𝑆!	 +	0.11𝐷𝐶𝑂𝑉𝐼𝐷!LN + 𝜀P̂!  
    (0.025)                                    (0.0068)             (0.0049)                          (0.022)                    

 

 Observations 146     Schwarz criterion -5.02 
𝑅S 0.87 100 ∗ 𝜎7 1.63% 

Misspecification tests P-value Misspecification tests P-value 
Autocorrelation (2) 0.62 Normality 0.96 

RESET (1) 0.66 Linearity 𝑢7K!LM 0.00 
ARCH (1) 0.52 Huber-White 0.55 

Cointegration tests T-ratio Cointegration tests T-ratio 
EC (𝑡R∗) -4.71 NEC (𝑡R) -0.11 

NEC (𝑡'∗) -6.07 NEC (𝑡') -5.52 
Notes: Ordinary least squares (OLS) estimates of two-step nonlinear error-correction model, with standard errors in 
parentheses. 𝑢K*#$% = (𝑚 − 𝑝 − 𝑦)#$% + 0.26 + 8.11	𝑅𝑁𝐴#$% is the two-step cointegrating residual by estimated FM-OLS 
for the whole sample (1877 – 2023). The linearity test of 𝑢K*#$% test the null hypothesis of a general cubic-polynomial EC 
representation (i.e. 𝑃𝑂𝐿	(𝑈) = 𝜌%	𝑢K*#$% + 𝜌)	𝑢K*#$%) + 𝜌&	𝑢K*#$%& ) against a linear EC representation (𝐻,: 𝜌) = 𝜌& = 0). The 
5% and 10% critical values (c.v.) for rejecting the null hypothesis of no cointegration are provided in Table 2, based on c.v. 
specifically generated for a sample size of T = 150. Source: Authors’ calculations. 

 
12 The Combination Test, or Forecast Encompassing Test, proposed by Chong and Hendry (1986) and 
refined by Timmermann (2006), test the null hypothesis that a single forecast encapsulates all the 
information contained in other individual forecasts, i.e. the difference between the true values and the 
forecasted values from forecast is not related to the forecasts from all other models. 
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Overall, the out-of-sample forecasting evaluation of all presented nonlinear 

models (A, B, C and D) meets a broad range of statistical criteria and encompasses a 

significant proportion of money demand behavior, explaining over 85% of the variability 

in money demand over more than 140 years of data. These characteristics are essential 

for accurately characterizing the underlying data generation process and reinforce the 

notion that measures of the opportunity cost of money and modeling nonlinear behavior 

are jointly necessary for establishing a well-specified and stable money demand model, 

leading to the selection of the NEC Model A as the parsimonious money demand model. 

Based on its ability to capture nonlinear dynamics, the economic consistency and direct 

interpretation of its coefficients, and its in-sample and out-of-sample performance, Model 

A emerges as the most robust and parsimonious choice among the selected models. 
 

Table 20. Impact of Constant Excess Money Demand Episodes on Inflation (1877 - 2023) 

∆𝑝! = 0.022 + 0.065	(𝐷1! + 𝐷3! + 𝐷𝐶! + 𝐷𝐶𝑂𝑉𝐼𝐷!LN) + 	𝜖!̂ 
                                              (0.0065)     (0.017) 

𝑅!	= 0.19          Observations= 147 (1877 – 2023)         100 ∗ 𝜎7 = 4.84% 

Notes: Coefficients from OLS regressions, with standard errors in parentheses, for the whole sample period (1877 
- 2023) robust to both heteroskedasticity and autocorrelation, HAC standard errors (Newey and West 1987). 
Source: Authors` calculations. 

 

 

Figure 8. Estimated Contemporaneous Impact of Excess Money Demand Episodes on 
Long-Run Inflation (1877 - 2023) 

Notes: Figure plots the actual values ∆𝑝# and fitted values ∆𝑝#P ,		of contemporaneous Equation estimated by OLS in 
Table 20 for the whole sample period (1877 - 2023) robust to both heteroskedasticity and autocorrelation, HAC standard 
errors (Newey and West 1987). Source: Authors’ calculations.  
 

In the presence of excess money demand shocks, due to wars, covid, etc., these 

excess money holdings over the expected value, anticipate positive constant effects on 

inflation. Having stable UK long-run money demands, with short-run nonlinear 
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equilibrium corrections, are key elements to identify those periods of excess money 

demand, generating periods of 6.5% excess inflation over the historical 2.2% average. All 

coefficients of the dummy variables in Table 20 have equal signs and magnitude. This 

results (Table 20 and Figure 8) open the door for the use of dynamic money demand 

equations as an instrument to identify periods of excess money holding that anticipates 

high inflationary periods.  

6. QUANTITATIVE THEORY OF MONEY AND MONETARY POLICY IN 

THE UK: IMPLICATIONS BASED ON EMPIRICAL EVIDENCE 

In the previous section we showed that long-run and short-run UK money demands 

provide useful information anticipating inflation. Here we show that a) There is no valid 

common factor (COMFAC) restriction, between the long-run and the short-run money 

demand parameters and that imposing this COMFAC restriction in a theoretical model 

might lead us to the wrong conclusions relating the rate of growth of money and inflation 

and b) controlling for the main long-run economic determinants of real money demand, 

helps us identifying periods of excess long-run money demand, as well as periods of 

external excess growth in money demand (wars, regulatory changes, etc.),  which are 

useful predictors of high inflationary periods. Since inflation control is at the end of the 

day the main goal of central banks, several main monetary policy issues are reevaluated 

now based on our main UK empirical findings. 

Why the UK the rate of growth of real income in the UK has no contemporaneous 

role in explaining the rate of growth of real balances? For that, we consider a simple 

model use by Galí (2007), when criticizing the European Central Bank´s (ECB) monetary 

policy for insisting in the stability of the long-run money demand.  

Normalize the target inflation (DpX) and trend output growth (DyX) to zero, 

therefore the target money growth is also zero. Now, consider that inflation is proportional 

to the output deviation from it natural level (yn), Dp = l(y- yn). Assuming, for simplicity, 

the existence of a stable long-run money demand independent of the interest rate and 

given by . Let the ECB´s real money gap be given by . 

Now consider that there is a productivity boom with a persistent increase in the 

natural rate of output (Dyn  >0), and that the ECB succeeds in stabilizing inflation (Dp=0), 
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by say reducing interest rates to reach an equal increase in output (Dyn =Dy ). The issue 

now is to evaluate whether money growth is still at the reference value equal to zero, 

∆𝑚 = 0. For that, Galí (2007) takes first differences of, the long-run money demand 

equation, , to say that the money will experience a persistent deviation 

from its reference value equal to 0. However, this argument is valid only if the common 

factor (COMFAC) restriction is imposed, but this restriction is generally not supported 

empirically, as we show later with UK data. Furthermore, in the empirical section we 

obtain that, the short-run money demand is determined by inflation and by other variables 

(like long term interest rates, etc.) but the growth of real output is not. Therefore, is not 

true that there will always be a deviation from the reference value of money growth if the 

money demand is taken into consideration in a monetary policy targeting inflation. 

Furthermore, Ireland (2004) considers the following stochastic money demand equation, 

                                          (16) 

where mt , pt, yt and SRt are I(1) and et is a stochastic I(0) variable, like a stationary AR(1), 

and 𝜂8 i.i.d . However, we showed 𝜂8 not i.i.d and is not exogenous to the rates of growth 

of real income and interest rates and in fact it includes those I(0) factors. Equation (16) is 

useful to explain why in the UK real income affects the money demand in the long run, 

but its rate of growth does not affect the rate of growth of real money demand. By taking 

first differences in the first equation of (16), we get (17)  

                             (17) 

and we are imposing in the first equation of (17) the invalid COMFAC restriction, that 

equations with variables in levels (16) and with variables differences (17) have the same 

coefficient values. Once again, without considering the second equation of (17), we get 

the wrong impression that the rate of growth of real income and the first difference of the 

nominal short-term interest rates are relevant drivers of the rate of growth of real money 

demand, based on the QTM. But, in the UK the stochastic term of (17) is not i.i.d, since 

it is affected by variables like, Dpt, Dyt, DSRt, and Dxt. That is 𝜂8 = −𝛽9∆𝑦8 + 𝛽:;∆𝑅𝑆8 +

𝛽<∆𝑥8 + 𝜀8 and therefore (17) is reduced to (18). We show that in the UK the vector Dxt 
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includes other significant variables like the rates of growth of short-term and long-term 

interest rates, etc.  

                           (18) 

Therefore, applying the QTM to the UK, neither the rate of growth of real income 

nor the first difference of the nominal short-term interest rate, are significant drivers of 

the rate of growth of the real money demand. In fact, the nominal rate of growth of money 

demand is determined only mainly by inflation (Dpt), by the equilibrium correction term 

with one lag (et-1), and by the rates of growth of short-term and long-term interest rates, 

all included in the vector Dxt of (18).  

To evaluate the impact of imposing the common factor restriction (COMFAC) in 

the UK between, the short-run coefficients and the long-run cointegrating coefficients in 

Figure 9 see the impact of this restriction. 

Figure 9. Effects of COMFAC Restrictions on Real Money Demand, ∆(𝑚 − 𝑝)P. 

Note: COMFAC imposes long-run money demand coefficients, estimated in Equation (11.2) onto the short-run model. 
In contrast, NO COMFAC specification estimates contemporaneous coefficients (∆𝑝, ∆𝑦# ∆𝑅𝑁𝐴#) for the period 1877–
2023 using OLS robust to both heteroskedasticity and autocorrelation, HAC standard errors (Newey and West 1987). 
In the second graph we present the results of both estimations after adjusting for structural break dummies 
((𝐷1 + 𝐷3)#	, 𝐷4#*∆𝑟𝑛𝑎#, 𝐷𝐶#, 𝐷𝐶𝑅𝐼𝑆𝐼𝑆#, 𝐷𝐶𝑂𝑉𝐼𝐷#$)). Source: Authors’ calculations. 

Notice, that by comparing the predicted real balances given by the green line 

(imposing the COMFAC restriction) with the predictions with the red line (NO-

COMFAC restriction imposed), and the actual data (black line), it is clear that by not 

imposing the COMFAC restriction we can reduce by a large amount of “artificial excess 

variability” generated in the rates of growth of real money demand, ∆(𝑚 − 𝑝)!, because 

it is not in the actual data (black line in Figure 9).  
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Looking for theoretical models that address the money demand decisions at higher 

frequencies (short-run money demand), we found the work of Alvarez and Lippi (2014) 

and Belongia and Ireland (2019) but they do not provide specific empirical relations 

integrating the short run with the long run in all the equations, like in the Taylor´s rule. 

This integration comes from Granger´s representation theorem ((Engle and Granger 1987; 

Johansen 1992). The nonlinearity in money demand functions in the short run can be 

drawn from Miller and Orr (1966), Akerlof (1979) and Mishkin (1995)´s target-bound 

model, in which a representative agent’s decision to hold money depends on a target level 

of desired money balances, as well as lower and upper limits that should not be exceeded. 

Similarly, the buffer-stock models, developed by Gandolfi and Lothian (1976) and 

Cuthbertson and Taylor (1987), recognize that, if transaction costs are nonzero, it may be 

optimal for agents to adjust only for relatively large deviations from its long-run 

equilibrium. Thus, these models imply that the speed of the equilibrium adjustments in 

money demand functions are likely be smooth and nonlinear, as opposed to abrupt change 

as in threshold autoregressive models, (TAR). 

The traditional view of the QTM states, by solving for inflation in the first equation 

of (17) to obtain (19), that inflation occurs together changes in the rates of monetary 

aggregates adjusted for the rate of growth in output and velocity (or short-term interest 

rates) is not valid for the UK, 

                              (19) 

However, as we have seen before, ∆𝑒8 in (19) is not i.i.d, nor exogenous, since it 

is influenced by variables economic that move in opposite directions to real income and 

short-term interest rates. Then, unless we control in (19) to have exogenous variables and 

to get residuals that are i.i.d, the conclusions are spurious. Any change in real income, or 

in interest rates will affect velocity as well and cannot be assumed to be constant. 

Estimating by OLS, or by HAC, the equations of the QTM, with variables in levels and 

variables in differences, (27), we get very different empirical coefficient values,  

               (27) 

The reason is because the residuals from both equations are neither white noise 

nor the explanatory variables are exogenous. However, in the first equation this is not 
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relevant because the cointegration estimator is super-consistent even in the presence of 

endogenous regressors, but this is not true when we have stationary variables (in first 

differences) as in the second equation of (27).  

One way to orthogonalized the explanatory variables of the cointegrating equation 

of the QTM and getting white noise residuals, is to run a linear ARDL of the residuals of 

the cointegrating equation as in (28), conditioning on all the I(0) variables entering in the 

QTM equation, 

             (28) 

Taking first difference of the cointegrating equation of (27) and from (28) we 

observe that the contemporaneous rates of growth of real income and of short-term 

interest rates cancel out in (29),  

         (29) 

A fully specified model of the QTM, with white noise residuals is reduced to 

equation (30).  

           (30)   

This system of equations (30) has important implications to forecast inflation and 

to determine the rate of growth of money supply consistent with an inflationary target, 

opening the door of the use money as an instrument in monetary policy targeting inflation. 
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Decomposing the system (30) into the part that is forecastable at t-1 and the part that 

determined by contemporaneous variables, the system (30) is reduced to equation (31), 

                              (31) 

Notice that the elements of velocity of circulation of money now,
 

, do not 

depend neither on contemporaneous values of the inflation rate, on the rate of real income 

growth, nor on changes in short-term interest rates. Therefore, in (31) we have a monetary 

policy equation for inflation, consistent with a fully specified QTM equations base 

exogenous variables and white noise residuals, or 

                            (32) 

In percentage terms equation (32) establish that the next period rate of inflation 

can be controlled by fixing the rate of growth of money supply in the hand of the central 

banks, net of the predicted rate of change in velocity of circulation of money at time t-1, 

based on stable real money demand estimates. That is, 

                       (33) 

Say that the target inflation is equal to long-run historical average of 2.2%, 

previously estimated in Table 20. Then from (31), the corresponding rate of growth of 

money, net of the last period predicted rate of change on velocity of circulation of money 

demand, should be set equal to 0.84%, 

                    (34) 

Therefore, monetary policy rule (34), stablish that the rate of growth of real income, 

the rate of change of short-term interest rates and the equilibrium correction terms provide 

useful information to anticipate at time t-1 the changes the velocity of circulation of the 

money  ∆e
^
>,'8.  However, their contemporaneous values at time t+1 are of no use to 

calculate the next period rate for growth of net money supply, ∆m8-', that could be fixed 

at the rate of growth of 0.84%, consistent with the target inflation of 2.2%. 

Now, we are ready to answer the question of, what concept of velocity o circulation 

of money allows us to do monetary policy analysis based on the QTM equation? The 

answer is the “net nominal money demand (met)” obtained from the money demand 
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equation (30), or by the one obtained with the more money demand equation given in the 

nonlinear equilibrium correction (NEC) model of Table 7. 

Subtracting the fitted values of (28), say 𝑒̂?,!, from 𝑚! we get what we call “net 

nominal money demand” that will be very useful, 𝑚𝑒! = 𝑚! − 𝑒̂?,!. Using this net 

nominal money demand variable in the QTM cointegrating equation, the explanatory 

variables are exogenous by construction and the residual are white noise. Therefore, now 

there should be no relevant difference in the estimated coefficients of QTM equation, if 

we analyze the equation with variables in differences, with variables in log-levels or with 

variables in deviations from steady state (using say the HP filters with 𝜆 = 100), as we 

obtained estimating now the system (35), 

  .                (35) 

Therefore, to do policy analysis based on the QTM equation we cannot assume that the 

parameters of the equation do not change (COMFAC restriction), if the variables entering 

the QTM equation are in levels, or alternatively they are entering  in deviations from 

steady-state (business cycle components), or in first differences (or in rates of growth) or 

in differences from the steady-state (first differences of business cycle components). 

However, if the money concept of money entering in QTM is the net nominal money 

demand, then the parameters of all the equations do not change significantly, allowing us 

to do policy analysis based on any of the equations of (35). This important issue is usually 

not considered neither in theoretical macroeconomic models, nor when doing policy 

analysis based on the QTM. In summary, money matters for monetary policy targeting 

inflation. But is not the nominal amount of money, is the “net nominal money demand”, 

met, obtained from estimating stable money demand equations that generate a “net 

velocity of circulation of money”, equal to (𝛆
^
𝟏𝐭	𝑜𝑟	𝛆

^
𝟑𝐭) in (35). 
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7. CONCLUSIONS 

Since the influential work of Friedman and Schwartz (1963, 1982) and later on of 

Hendry and Ericsson (1991) on the monetary history of the US and the UK from 1876 to 

1975, there has been a great concern in the literature about the potential instability of 

money demand functions. According to the traditional prescription of the Quantity 

Theory of Money (QTM) expressed in growth rates says that if the velocity of circulation 

of money is close to being constant (∆𝑣!»	0), central banks could achieve a zero-inflation 

rate by setting the growth rate of money supply equal to the growth rate of real income. 

However, it is well known that velocity, ∆𝑣!, is far from been constant. We also show 

that is far from having exogenous variables, that satisfies a COMFAC restriction and is 

not having i.i.d. errors, with important monetary policy implications. Finding a stable 

relation for -∆𝑣!	is nothing more than finding a stable real money demand equation and 

would allow us to study under what conditions velocity would close zero, or close to reach 

a particular inflation target. By means of nonlinear cointegration and nonlinear error-

correction models, this paper presents evidence of alternative competing UK money 

demand models that provide stable long-run and short-run estimates from 1874 to 2023, 

apart from constant interventions to control for war periods, financial crisis, covid, etc. 

They are based on broad money measures and an adjusted opportunity cost of holding 

money, suggested Ericsson et al. (1998). These equations provide key elements to identify 

periods of excess money demand generating periods of 6.5% excess inflation, over the 

historical 2.2% average. In summary, money demand estimates provide a simple policy 

rule for the rate of growth of “net money demand” and provides additional cross-check 

instruments for monetary policy to reach inflation targets. Finally, stable money demand 

estimates are useful to identify spurious transmission channels of monetary policy when 

theoretical models, impose invalid common factor (COMFAC) restrictions and are based 

on a QTM not fully specified and based on exogenous variables and white noise residuals. 

The “net concept of velocity of circulation money” introduced here allow us to do policy 

analysis based on the QTM equations. 
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A. DATA APPENDIX 

Variable Definition Sources 
𝑚! Nominal money stock (millions of £) measured as ln(𝑀!). [1]-[3], [5] 

𝑝! Price level (index 1929=100) measured as ln(𝑃!). [1]-[3], [5] 

𝑦! Real income (millions of £) measured as ln(𝑌!). [1]-[3], [6] 

(𝑚 − 𝑝)! Real money balances (broad measure) measured as ln	(𝑀! ⁄ 𝑃!).  

(𝑚 − 𝑝 − 𝑦)! Inverse of money velocity measured as ln	(𝑀! ⁄ (𝑌! ∗ 𝑃!)).  

𝑣! Money velocity measured as ln	(𝑌! ∗ 𝑃! ⁄ 𝑀!) = (𝑦 + 𝑝 −𝑚)!.	  

𝐻!	 Nominal high-powered money (Millions of £). [1]-[3], [5] 

𝑅𝑆! Short-term nominal interest rate (fraction, percent per annum). [1], [5] 

𝑅𝐿! Long-term interest rate (fraction, percent per annum). [4], [5] 

𝑟𝑛𝑎! Opportunity cost measure13, calculated as 𝑅𝑆! ∗ (𝐻!Q/𝑀!
Q	)/0.25.   

𝐷1! Dummy that takes 1 for WWI (1914 – 1918) and 0 otherwise.  

𝐷3! Dummy that takes 1 for WWII (1939 – 1945) and 0 otherwise.  

𝐷4!*∆𝑟𝑛𝑎! 
Product of dummy that takes 1 for first period of Financial and Credit 
Deregulation (1971 – 1975) and 0 otherwise, and first difference of 𝑟𝑛𝑎! 

 

𝐷𝐶! 
Dummy takes 1 for both periods of UK Financial and Credit Deregulation 
(from 1971-1975 and 1986-1989) and 0 otherwise. 

 

𝐷𝐶𝑅𝐼𝑆𝐼𝑆! 
Dummy for the financial crisis. It takes value of 1 from 2000 to 2007, -1 
from 2008 to 2011, and 0 otherwise.  

𝐷9! Dummy that takes 1 for the financial crisis shock (2009) and 0 otherwise  

𝐷𝐶𝑂𝑉𝐼𝐷! 
Dummy for the global economic recession caused by the COVID-19 
pandemic in 2020. It takes value of 1 in 2020 and 0 otherwise. 

 

[1] Friedman and Schwartz (1982). 

[2] Hendry and Ericsson (1991). 

[3] Escribano (2004). 

[4] Thomas and Dimsdale (2017) 

[5] Bank of England (BoE). 

[6] Office of National Statistics (ONS). 

[7] Organisation for Economic Co-operation and Development (OECD) 

 
13 As advised by Ericsson, Hendry, and Prestwich (1998),	𝑅𝑁𝐴# is constructed using the actual values of nominal high-
powered money (𝐻#-) and broad money stock (𝑀#

-), which denote series without any rescaling in the transition years. 
For ease of comparison to other interest rate measures, 𝑅𝑁𝐴# is rescaled by the constant 𝑐 = 0.25. 
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B. APPENDIX 

 

Figure B.1. Historical Comparison Between High-Powered Money to Broad Money 
Ratios, and Short-Run Interest Rates Measures 

Notes: First figure plot the proportion of high-powered money to broad money, using actual (𝐻𝐴𝑀𝐴 = 𝐻#- 𝑀#
-⁄ ) and 

spliced values (𝐻𝑀 = 𝐻# 𝑀#⁄ ) and, second figure plots the short-term opportunity cost measures, 𝑅𝑁𝐴#, and 𝑅𝑆#, for 
the whole sample period (1871 – 2023) in percent per annum.  

 
Figure B.2. Selected NEC Model A Constancy Diagnostic: Recursive Estimates 

Notes: Figure plots the recursively estimated coefficients, the 1-step residuals plus-or-minus twice their recursively 

estimated standard errors (dotted black lines), the cumulative sum of the recursive residuals and its sum of squares 

(CUSUM) together with the 5% critical lines (dotted black lines) and the 1-step forecast probability that parameter 

constancy would be rejected at time t for the selected Model A of Table 19. 

. 

 
Figure B.3. Comparison of Interest Rates in Levels and Logarithms 

Notes: Figure compares the growth rates of short-term opportunity cost (∆𝑅𝑁𝐴#) and long-term interest rates (∆𝑅𝐿#) 
in logarithmic and level terms from 1878 to 2023. All values are reported as percentages. 
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Table B.1. Seminal UK Historical Competing Money Demand Estimates (1878 – 1970)  
 Dependent variable: 	∆(𝑚 − 𝑝)P 

Regressors Hendry and 
Ericsson (1985) 

Longbottom and 
Holly (1985) 

Escribano 
 (1985, 1986) 

Hendry and 
Ericsson (1991) 

∆S(𝑚 − 𝑝)PQR 0.37 (0.05) - - - - - - 
∆S(𝑚 − 𝑝)PQS -0.06 (0.075) -0.13 (0.041) - - -0.10 (0.04) 
∆(𝑚 − 𝑝)PQR - - 0.47 (0.063) 0.45 (0.073) 0.45 (0.06) 
∆(𝑚 − 𝑝)PQS - - - - -0.16 (0.053) - - 
∆(𝑚 − 𝑝)PQ' - - - - 0.08 (0.047) - - 
(1/4)∆W𝑦P 0.64 (0.14) - - - - - - 
∆𝑦P - - - - 0.08 (1.7) - - 
∆S𝑝P -0.47 (0.040) -0.63 (0.041) - - - - 
∆S𝑝PQS -0.14 (0.07) - - - - - - 
∆𝑝P - - - - -0.61 (0.044) -0.60 (0.04) 
∆𝑝PQR - - -0.22 (0.046) 0.37 (0.052) 0.39 (0.05) 
∆𝑝PQS - - - - - - - - 
∆𝑅𝐿P - - - - -0.01 (0.006) - - 
(1/2)∆S𝑅𝐿P -3.3 (1.1) - - - - - - 
∆S𝑟𝑙P - - -0.011 (0.002) - - -0.062 (0.021) 
∆𝑟𝑠P - - - - - - -0.021 (0.006) 
∆𝑅𝑆P - - - - -0.008 (0.002) - - 
(𝑚 − 𝑝 − 𝑦)PQW -0.20 (0.02) - - - - - - 
(𝑚 − 𝑝)PQR - - -0.058 (0.015) - - - - 
𝑦P - - 0.065 (0.015) - - - - 
𝑅𝑆P -0.78 (0.18) - - - - - - 
𝑟𝑠P - - -0.0056 (0.004) - - - - 
𝐷1P 1.9 (0.79) - - 0.04 (0.009) - - 
𝐷2P 3.6 (0.6) - - - - - - 
𝐷3P 0.6 (0.86) - - 0.04 (0.007) - - 
(𝐷1 + 𝐷3)# - - 0.034 (0.006) - - 0.037 (0.006) 
𝐷4# ∗ ∆𝑅𝑆# - - - - - - 0.080 (0.027) 
𝐷𝐶# - - - - - - 0.050 (0.008) 
𝑢3TPQR - - - - -0.018 (0.03)) - - 
𝑢3TPQR

S - - - - 0.5 (0.15) - - 
𝑢3TPQR

' - - - - -2.18 (0.95) - - 
(𝑢3TPQR − 0.2)𝑢3TPQR

S - - - - - - -2.55 (0.59) 
Constant -0.086 (0.12) -0.074 (0.031) 0.004 (0.003) 0.005 (0.002) 

𝑅S 0.82 0.86 0.87 0.87 
100 ∗ 𝜎3 1.70% 1.46% 1.46% 1.42% 

No. of parameters 12 10 14 9 
Notes: Each column of the short-run equations presents coefficients obtained from separate OLS regressions, with standard 
errors provided in parentheses. These results are referenced in the papers cited above. Below are the details of the models: 

(i) Hendry and Ericsson (1985), and Longbottom and Holly (1985)`s models are one-step EC. 
(ii) Escribano (1985, 1986), and Hendry and Ericsson (1991)`s models are two-step NEC with cointegrating residual 

𝑢K*#$% = (𝑚 − 𝑝 − 𝑦)#$% + 0.31 + 7.0	𝑅𝑆#$%. 
 


