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1. Introduction

Understanding long-run equilibrium relationships linking economic or financial variables

is central to economic modelling. In practice, such relationships result in time-series moving

together due to the presence of common trends in their dynamics. This phenomenon is

referred to as cointegration. Cointegration analysis, which determines whether a group of

nonstationary variables share common stochastic trends has traditionally been conducted in

low-dimensional settings. Classical methods for detecting cointegration like the Engle-Granger

two-step procedure (Engle and Granger (1987)) or Johansen’s maximum likelihood approach

(Johansen (1991)) are well-suited for environments with few variables. However, with the

advent of high-dimensional data where the number of series of interest to an investigation may

be large traditional methods become inadequate for identifying cointegrating relationships or

testing for their presence. In high-dimensional settings, standard estimation techniques like

least squares often become unstable, even when computationally feasible. Moreover, the lack

of oracle knowledge makes it challenging to identify a small subset of cointegration-inducing

variables from a large pool of candidates.

The goal of this paper is to propose a simple method to test for the presence of cointegra-

tion among a large pool of I(1) candidate series, particularly in cases where cointegration,

if present, is assumed to be sparse and one wishes to uncover these cointegration-inducing

covariates. The environment is that of a single equation cointegration setting where a target

series of interest potentially cointegrates with a small number of series from a large pool

of candidates, and which the investigator wishes to detect. This covariate selection stage

is particularly important as the resulting residuals will be used to assess the presence or

absence of cointegration. Consider the problem of determining whether the stock price

of a specific constituent of a stock market index, such as the FTSE100 or S&P500, coin-

tegrates with other stocks in the index. This question holds important implications for

portfolio diversification, as cointegrated stocks exhibit stable long-run relationships that

mitigate risks. Similarly, it may be of interest to determine whether stocks within similar

industries share a common stochastic trend. Such analyses require cointegration methods
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capable of handling a large number of covariate candidates to detect meaningful relation-

ships. The sparse nature of cointegration that we operate under reflects the idea that most

variables in high-dimensional economic and financial data will be irrelevant to any given

cointegrating relationship. For example, while a stock’s price may cointegrate with a handful

of other stocks in the market (e.g., stocks in related industries), it is unlikely to share

such a relationship with all 99 other constituents in an index like the FTSE100. Identifying

this sparse active subset of predictors is therefore essential for meaningful subsequent analysis.

A key challenge in this context therefore, is accurately identifying the small subset of

integrated, I(1), series that are linked through a cointegrating relationship, particularly

when selecting from a large pool of candidate series. We address this by proposing an

estimator based on the adaptive LASSO. This method offers both computational efficiency

and model-selection consistency, asymptotically identifying the true subset of series driving

cointegration. Furthermore, this estimator is also shown to deliver slope parameter estimates

that are super-consistent.

A second challenge is to establish whether the residuals obtained from this adaptive

LASSO based procedure are I(1) or I(0). Although one may be inclined to invoke existing

techniques such as ADF type unit root tests (Engle and Granger (1987), Engle and Yoo

(1987), Phillips and Ouliaris (1990)) or KPSS type stationarity tests (Kwiatowski et al. (1992),

Shin (1994)), both of these face limitations that tend to amplify in high dimensional contexts

(e.g., non-standard limiting distributions that depend on the number of fitted covariates

requiring model specific tabulations). In this paper we depart from these testing based

methods and propose an information-theoretic approach that avoids reliance on asymptotic

distribution-based inferences. An important additional advantage of such an approach is its

robustness to phenomena such as endogeneity and serial correlation while also being immune

to the the number of fitted covariates. The viewing of inferences about stationarity and

non-stationarity as a model selection problem has been explored in the context of unit-root

detection in Phillips and Ploberger (1996), Phillips (2008) among others and in the context

of vector error correction models in Gonzalo and Pitarakis (1998).
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This work adds to the growing research on high-dimensional estimation and inference

in nonstationary settings. Incorporating modern high-dimensional statistical methods into

time series analysis is particularly important for understanding economic data. However, the

combination of high dimensionality and nonstationarity presents unique challenges. High

dimensionality can lead to misleading results in nonstationary environments, as highlighted

by studies like Gonzalo and Pitarakis (1999, 2021) and Onatski and Wang (2018). Recent

research has developed theoretical tools to address these challenges in high-dimensional

contexts involving I(1) processes and cointegration. For example, Kock (2016) studied the

properties of the adaptive LASSO in autoregressive models with unit roots. Koo et al. (2020)

and Lee, Shi, and Gao (2022) established precise limiting distributions for LASSO-based

estimators in high-dimensional predictive regressions with unit-root covariates. Closer to

our approach, Smeekes and Wijler (2021) introduced a penalized error correction model and

proposed a LASSO-based method for estimating its parameters. Building on this literature,

our paper presents a simple, practical method for identifying cointegrating relationships in

settings where the pool of candidate variables may be large.

The remainder of the paper is structured as follows. Section 2 introduces the theoretical

framework. Section 3 introduces the two-steps approach to detecting cointegration and

obtains its theoretical properties. Section 3 evaluates the performance of the proposed

procedures using Monte Carlo simulations. Section 4 discusses their practical implementation

and Section 5 concludes.

2. Theoretical Framework

We consider a single-equation cointegration setting where the target variable yt may

cointegrate with a subset of predictors drawn from a large pool of p I(1) series. The operating
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model is given by:

yt = β0 + x′
tβ + zt, t = 1, . . . , n, (1)

where yt ∈ R is the target variable, xt = (x1t, x2t, . . . , xpt)′ ∈ Rp is a p-dimensional vector of

covariates, β = (β1, β2, . . . , βp)′ ∈ Rp is the vector of unknown slope coefficients, β0 ∈ R is

the intercept term, and zt ∈ R represents the deviation from the equilibrium relationship.

The covariates xt are modeled as I(1) processes, possibly correlated across dimensions

and with serially correlated disturbances:

xjt = xj,t−1 + vjt, j = 1, . . . , p, t = 1, . . . , n. (2)

The deviation term zt is modelled as

zt = ρzt−1 + ut, t = 1, . . . , n. (3)

Letting ηt = (ut, v1t, . . . , vpt)′, we model these p + 1 disturbance series as

ηt = C(L) et (4)

where C(L) = ∑∞
i=0 Ciet−i for ∑∞

i=0 i|Ci|< ∞, C0 = I and et ∼ i.i.d.(0, Σe) with E∥e∥2+δ<

∞ for some positive δ. These assumptions are standard in this literature and essentially

ensure that an FCLT holds for the ηt sequence. Under cointegration, the existence of a

long-run equilibrium relationship implies that zt is stationary with |ρ|< 1, even though both

yt and the components of xt are individually I(1) processes. If ρ = 1 instead, (1) is viewed as

a spurious regression.

To formalise the notion of sparse cointegration, let

S = {j: βj ̸= 0}, j = 1, . . . , p (5)

denote the set of active covariates inducing cointegration, with |S|= s ≪ p. The remaining
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covariates with βj = 0 are irrelevant for the cointegrating relationship. The notion of

sparse cointegration posits that the target variable yt is cointegrated with only a small

number of covariates among the large pool of p candidates. Formally, this is expressed by

assuming that the cardinality of the active set S is much smaller than p, i.e., s = |S|≪ p.

This assumption reflects the realistic scenario where most covariates are irrelevant for the

equilibrium relationship, as often encountered in applications with high-dimensional economic

and financial data. Sparse cointegration implies that β is a sparse vector, where:

βj ̸= 0 if and only if j ∈ S, βj = 0 for j /∈ S. (6)

In line with the above description of the notion of sparse cointegration, we let the s × 1

vector βS collect the parameters whose covariates induce cointegration, when the latter is

present. Similarly we let xS,t denote the s − vector of active covariates associated with

βS. The parameters associated with the variables that do not actively enter (1) are in turn

collected in the (p − s) vector βSc while xSc,t collects the (p − s) inactive series.

Our goal is to assess whether (1) is truly a cointegrating relationship by analyzing the

stationarity of zt when p is large and only a small unknown number of these series induce

cointegration, if the latter is truly present. If sparse cointegration is present for instance we

expect the residuals from the oracle regression yt = β0 + x′
S,tβS + zt to behave like an I(0)

process which our approach will be designed to detect.

Throughout this paper our theoretical analyses will operate under a fixed p setting with

n → ∞. This has been the norm in the context of adaptive LASSO estimation and other

developments in this literature (e.g., Zou (2016), Kock (2012)) and does not preclude the

treatment of high dimensionality while ruling out ultra-high dimensional settings under

which p may exceed the sample size n. When dealing with p candidate predictors, even

moderately large values of p result in an impractically large number of 2p possible models,

making conventional model selection methods impractical. It is also well known that OLS

becomes highly instable when p/n is large even under p < n. Finally, and perhaps most
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importantly, the residuals obtained from a large number of estimated slope parameters via

least-squares for instance, will accumulate large estimation errors and are unlikely to result

in reliable inferences.

3. Estimation and Testing

We initially motivate and describe the use of the adaptive LASSO as a method to perform

model-selection and estimation in a single shot within the cointegrating regression model in

(1).The adaptive LASSO estimator of the model parameters is given by

(β̂AL
0 , β̂AL) = arg min

β0,β

{
n∑

t=1
(yt − β0 − x′

tβ)2 + λn

p∑
j=1

wj|βj|
}

. (7)

where λn is a regularization parameter (penalty term) and the wj’s are the adaptive weights

associated with βj . Specifically, given an initial estimator β̃j (e.g., OLS) these weights are set

as wj = 1/|β̃j|γ with γ > 0.

The adaptive LASSO is particularly well-suited to the cointegration setting considered

in this paper, as it addresses several limitations of the standard Lasso. In high-dimensional

regression problems, the standard LASSO suffers from shortcomings that are particularly

detrimental to our goal of consistently estimating the residuals of a sparse cointegrating

regression. Unless strong assumptions are imposed (e.g., irrepresentable condition) it does

not satisfy the oracle property, which guarantees asymptotic consistency and correct model

selection. The adaptive Lasso resolves these issues by introducing data-dependent weights

that penalize small coefficients more heavily, allowing for consistent estimation of large

coefficients while effectively shrinking irrelevant predictors to zero. Note for instance that if

β̃j is near zero, this results in very large associated w′
js, effectively penalizing parameters

associated with variables that are unlikely to be active. Unlike the standard Lasso, which

imposes the same penalty on all coefficients regardless of their magnitude, the adaptive Lasso

adjusts the penalty weights based on an initial estimate of the coefficients, typically obtained

via an OLS or ridge regression. By applying smaller penalties to coefficients with larger
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initial estimates, the adaptive Lasso allows these coefficients to converge more accurately to

their true values, while continuing to shrink the irrelevant coefficients to zero. This feature

makes the adaptive LASSO ideal for constructing consistent residuals ẑt, which are crucial

for the subsequent test that we develop.

Locating the optima of a function such as (7) is a convex optimisation problem which

guarantees that any local minimum is also a global minimum. The structure of the program

however is challenging due to the inclusion of the ℓ1 norm penalty in the objective function.

Note for instance that although the ℓ1 norm is convex, it is non-differentiable at points where

βj = 0. This creates difficulties for standard optimisation techniques such as gradient descent

which relies on smoothness. Instead, coordinate descent type of algorithms which avoid the

need to compute a full gradient at non-differentiable points are typically considered.

Given β̂AL estimated from (7), we write

Ŝ = {j: β̂AL
j ̸= 0} (8)

for the active set of predictors selected by the adaptive LASSO and in the sequel refer to

the covariates associated with this estimated active set as xŜt. We next use this estimated

active set Ŝ to form the residuals of interest. These can be obtained using the adaptive lasso

estimates directly:

ẑt = yt − β̂AL
0 − x′

tβ̂
AL (9)

noting that the vast majority of the components of β̂AL are set to zero, by the effect of

the ℓ1 penalization. Inferences about the presence or absence of cointegration can now be

implemented using the residual sequence in (9). Alternatively, we may also consider running

a post adaptive lasso OLS by regressing yt on the selected set xŜ,t.

Given the residual sequence ẑt constructed as above, our next goal is to assess whether or

not it contains a unit root in its autoregressive representation. For this purpose consider the
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following two competing models:

∆ẑt = µ +
k∑

j=1
ϕj∆ẑt−j + ϵt model M0 (10)

∆ẑt = µ + ϕ ẑt−1 +
k∑

j=1
ϕj∆ẑt−j + ϵt model M1. (11)

Model M0 imposes I(1) behaviour by fitting an AR(k) process in first differences to the

residuals. In contrast, model M1 allows the ẑ′
ts to be stationary. Because the ẑ′

ts are

centered by construction, the inclusion of an intercept term is not crucial. The order k of

the autoregressions is directly linked to the behaviour of the error process ut driving the

equilibrium errors as formulated in (3).

We now view the objective of testing for cointegration as a model selection problem

between models M0 and M1. Selecting model M0 indicates absence of cointegration (i.e.,

(1) is a spurious regression). In contrast, support for model M1 implies that the ẑ′
ts behave

like an I(0) process so that yt and the set of covariates selected by the adaptive lasso are

cointegrated.

Letting σ2
0 and σ2

1 denote the residuals from (10) and (11), selection between the two

models is made using the criteria

IC0 = ln σ2
0 + cn

n
(k + 1) (12)

IC1 = ln σ2
1 + cn

n
(k + 2) (13)

where cn is a deterministic penalty term and k ∈ {0, 1, . . . , kmax}. The proposed model-

selection based approach is based on comparing IC0 with IC1 and leads to choosing M0 if

IC0 ≤ IC1 and to choosing M1 if IC0 > IC1. Note that this model selection based approach

bears strong resemblance with a likelihood ratio type test since the requirement IC0 > IC1 for

rejecting M0 reduces to n ln σ2
0/σ2

1 > cn. Here the deterministic penalty term cn plays a simi-

lar role to the critical values used to form the rejection region of likelihood ratio type statistics.
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REMARK 1. In (10) and (11) the order k of the fitted autoregressions is meant to capture

the potential presence of serial correlation in the u′
ts driving the equilibrium errors. This

augmentation is fundamental for achieving nuisance parameter free asymptotics when im-

plementing test based inferences but is much less important in our model selection context.

Indeed, in large enough samples the ability of our proposed model selection based approach

for distinguishing between M0 and M1 is unaffected by the presence of serial correlation

in the u′
ts. As pointed out earlier for instance, the model selection based approach leads to

rejecting M0 when n ln σ2
0/σ2

1 > cn. Heuristically, if cn → ∞, correct decisions will typically

be ensured provided that n ln σ2
0/σ2

1 is Op(1) regardless of whether its limit is characterized

by nuisance parameters induced by serial correlation and/or endogeneity. Nevertheless, the

inclusion of the right number of lags will favourably influence finite sample properties.

3.1. Theoretical Properties

In a first instance we aim to obtain the model selection consistency of the adaptive LASSO

in the cointegrated regression setting. The ability of the adaptive lasso to uncover the true

sparse structure of cointegration is key to obtaining residuals that accurately mimic the true

underlying equilibrium errors when cointegration is present. Note that within our context,

we will solely be concerned with obtaining consistent estimates of β rather than the explicit

limiting distributions of β̂AL.

Proposition 1 below summarizes the adaptive LASSO’s ability to identify the true sparse

cointegration structure. It is here implicitly assumed that our results hold under the theoreti-

cal framework introduced in Section 2 and with |ρ|< 1 so that (1) is truly a cointegrating

regression.

Proposition 1 Under the conditions λn/n → 0 and λn/n1−γ → ∞ on the penalty term of the

adaptive lasso estimator and |ρ|< 1 (cointegrated regression), we have

lim
n→∞

P (Ŝ = S) = 1. (14)
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Proposition 1 thus establishes that, under cointegration, the adaptive LASSO asymptot-

ically selects the correct subset of cointegration-inducing covariates. As part of the proof

of Proposition 1, it is also shown that the resulting adaptive lasso parameter estimates are

n-consistent in the sense that n(β̂AL
S − β0

S) = Op(1) and n(β̂AL
Sc − 0) = Op(1). An immediate

implication of these results is that, when |ρ|< 1 and the model is estimated via the adaptive

lasso, we should expect ẑt ∼ I(0).

It is now also instructive to examine the model selection properties of the adaptive lasso

in a spurious regression context where the z′
ts are no longer equilibrium errors, behaving like

an I(1) process instead.

Proposition 2 Under the conditions λn/n → 0 and λn/n1−γ → ∞ on the penalty term of the

adaptive lasso estimator and ρ = 1 (spurious regression), we have

lim
n→∞

P (Ŝ = {1, 2, . . . , p}) = 1. (15)

The result in Proposition 2 indicates that the adaptive LASSO tends to include all pre-

dictors in the pool when the true model is spurious, leaving none of the slope parameters at

zero asymptotically The intuition follows from the construction of the adaptive lasso weights,

which are formed using initial least-squares estimates β̃j. In a spurious regression setting

these estimates converge in distribution and satisfy β̃j = Op(1). Thus the adaptive lasso

weights wj = 1/|β̃j|γ are bounded, regardless of the underlying magnitude of the β′
js. As a

result (see the proof of Proposition 2), the adaptive lasso effectively treats βj as unpenalized,

so no shrinkage is applied to any parameters. By analogy with Proposition 1, this also implies

that under a spurious regression, the adaptive lasso residuals follow an I(1) process, so that

∆ẑt ∼ I(0).

We next focus on detecting whether the estimated ẑ′
ts are consistent with an I(0) or an

I(1) process. Recall from (12)-(13) that our model selection based approach points to M0 if

IC0 < IC1 and to M1 otherwise. Proposition 3 establishes that such a selection process is
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model selection consistent asymptotically provided that the deterministic penalty term cn

satisfies suitable requirements.

Proposition 3 As n → ∞, (i) P (IC0 < IC1 | M0) → 1 if cn → ∞ and (ii) P (IC1 <

IC0 | M1) → 1 if cn/n → 0.

Part (i) of Proposition 3 establishes that in sufficiently large samples, model M0 will

be correctly selected provided that the penalty term satisfies cn → ∞. Similarly, part (ii)

shows that if the ẑ′
ts are an I(0) process (i.e., there is cointegration) the model selection based

approach will correctly point to M1 provided that cn/n → 0. Evidently, a criterion such as

the BIC with cn = ln n satisfies both of these requirements and is therefore model selection

consistent.

4. Implementation

Penalty Term in the adaptive lasso

The implementation of the adaptive LASSO requires choosing the penalty parameter λn

and setting the adaptive weights wj. As it is common in the model selection literature, the

theoretical requirements on the penalty term λn are such that a multitude of valid choices

can be considered in practice. In the context of a unit-root setting, Kock (2016) proposed to

select λn via the BIC criterion. This entails estimating the models via the adaptive LASSO

across a grid of λn values and picking the one that minimizes the BIC criterion, say λ̂bic
n .

Here we adopt a similar approach. Letting RSS(λn) = ∑n
t=1(yt − β̂AL

0 − x′
tβ̂

AL)2 denote the

residual sum of squares associated with the use of a penalty parameter λn we introduce

BIC(λn) = n ln
(

RSS(λn)
n

)
+ k(λn) ln n (16)

where k(λn) is the number of nonzero coefficients in β̂AL(λn). The data-based penalty we
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use in our adaptive lasso implementation is then

λ̂bic
n = arg min

λ∈Λ
{n ln

(
RSS(λn)

n

)
+ k(λn) ln n.} (17)

The practical implementation of (17) requires choosing a suitable range for λ for which

we create a grid of values ranging from a magnitude near zero up to ten (e.g., Λ =

logspace(−1.5, 0.5, 10) in a matlab based implementation).

Adaptive Lasso weights

Regarding the adaptive weights wj, we follow the literature by basing them on the standard

least squares estimates of the β′
js in the original cointegrating regression. Such estimates are

known to be n-consistent so that for j ∈ S we will have wj
p→ 1/|βj|γ while for j /∈ S we will

have wj
p→ ∞. This highlights the fact that parameters whose least squares estimates are

near zero will receive a strong penalization shrinking them exactly to zero.

Finally the γ exponent is most commonly set at γ = 1 or γ = 2 so that the conditions on

the adaptive lasso penalty become λn/n → 0 and λn → ∞ or λn/n → 0 and nλn → ∞ for

γ = 1 and γ = 2 respectively. In the sequel our experiments consider both of these scenarios.

Recall that γ controls the strength of the adaptation in the adaptive lasso. A larger γ induces

a more aggressive penalization of coefficients with small initial estimates. This allows for a

slower growth rate of λn for achieving model selection consistency. A smaller γ implies a less

aggressive penalization, requiring a faster growth rate of λn.

Optimization algorithm

The convex optimization programme in (7) is implemented via matlab’s lasso function

modified to account for the adaptive weights. This is achieved by scaling the regressors as

x̃j = xjw
−1
j and modifying the design matrix as X̃ = X diag(w−1

j ). The resulting plain lasso

estimates, say β̂plain can then be mapped back to obtain the adaptive lasso counterparts
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β̂AL = β̂plain diag(wj).

Choosing the lag order k in (10)-(11)

In line with most of the literature on lag length selection in ADF type regressions, we

estimate k via a BIC criterion implemented on the fitted model in (11) using a given upper

bound kmax. With k̂bic denoting such an estimate, the ensuing model selection based approach

for selecting between M0 and M1 is implemented using this k̂bic when fitting (10)-(11) via

least squares. Note that in the present context the accuracy of k̂bic is not fundamental for

achieving model selection consistency when comparing models M0 and M1. This is because

the selection consistency result of Proposition 3 does not require serially uncorrelated ϵ′
ts in

(10)-(11).

5. Finite Sample Experiments

Our simulations are structured as follows. In a first instance we document the model

selection ability of the adaptive LASSO by generating samples from a sparsely cointegrated

DGP and reporting the averaged false positive rates (FPR), false negative rates (FNR) and

false discovery rates (FDR) across replications.

The FPR quantifies the proportion of irrelevant covariates (true negatives) that are

incorrectly selected as relevant (false positives) by the adaptive LASSO algorithm. A high

FPR implies that the adaptive LASSO is selecting too many inactive covariates (overfitting).

Similarly, the FNR quantifies the proportion of truly relevant covariates (true positives) that

are incorrectly excluded by the adaptive LASSO algorithm (underfitting). Model selection

consistency implies that these metrics should be small and converge to zero for large n,

indicating that the adaptive LASSO applied to the cointegrating regression selects the correct

covariates and discards the inactive covariates. A third metric we also report is the false

discovery rate (FDR) which assesses the proportion of irrelevant regressors that have been

14



selected relative to the total number of selected covariates. It aims to assess how the algorithm

balances between discovering relevant covariates and limiting the selection of irrelevant ones.

REMARK 2: Although metrics such as the FPR, FNR or FDR are commonly used when

assessing covariate selection methods caution should be exercised when interpreting these

rates in the context of highly imbalanced datasets. In the context of our sparse cointegration

setting for instance, positives are rare compared to negatives (e.g., under p = 100 with

|s|= 5 for instance, 5 out of 100 covariates are true positives while the remainder 95 are true

negatives) so that a low FPR may coincide with a particularly large FDR. This would be a

common occurrence in datasets where negatives vastly outnumber positives. This imbalance

means that even a small number of false positives can lead to a high proportion of incorrect

positive predictions (high FDR). Intuitively, the fact that positives are rare, if a method

is associated with a low FNR it is likely that its FDR will be substantial. To illustrate

suppose that p = 100 and that there are s = 5 active covariates. Furthermore, suppose

that the adaptive lasso points to 7 active covariates (matching the correct 5 and in addition,

2 unnecessary ones). The FDR would be FDR = FP/(TP + FP) = 2/(2 + 5) ≈ 29% i.e.,

about 29% of the covariates identifed as active are actually false positives. The FPR for this

example is FPR = FP/(FP + TN) = 2/(2 + 93) ≈ 2% i.e., approximately 2% of the actual

negatives were incorrectly identified as positives.

Our points under Remark 2 suggest that the weight given to these different metrics must

be context dependent. In the setting considered in this paper, obtaining residuals ẑt that

mimic their true counterparts is particularly important and for this purpose, avoiding false

negatives so that one does not face omitted relevant variables is perhaps more important

than the inefficiencies caused by the inclusion of irrelevant covariates, provided that the latter

are not large in number.

Once we have documented the model selection consistency of the adaptive LASSO we

subsequently focus on the finite sample properties of our model-selection based approach

designed to distinguish between I(0) and I(1) residuals. For this purpose we report correct
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decision frequencies associated with both a cointegrated DGP (i.e., |ρ|< 1) and a non-

cointegrated one (i.e., ρ = 1).

5.1. DGP Parameterizations

We consider the following DGP:

yt = β0 + β1x1t + . . . + βpxpt + zt

xj,t = xj,t−1 + vj,t

zt = ρzt−1 + et (18)

where we set the degree of sparsity to 5 active covariates (βj ̸= 0 in (18)), i.e., |S|= 5 and

|Sc|= p − 5 and consider p ∈ {10, 50, 100}. The five active covariates are taken as the first

five of the x′
jts (i.e, j = 1, . . . , 5). We experiment with two alternative parameterizations of

βS corresponding to strong and weaker signals. These are given by βS = (1, 0.5, 1.5, 0.8, 1)′

and βS = (0.25, 0.25, 0.25, 0.25, 0.25)′ respectively. For the random disturbances we take

ηt = (et, v1,t, . . . , vp,t) ∼ NID(0, Ω) where

Ωp+1×p+1 =

 σ2
e ω′

ev

ωev Ωvv

 (19)

with ω′
ev = (σev1 , . . . , σevp) and Ωvv = E[vtv

′
t]. We set σ2

e = 4, [Ωvv]i,j = 0.5|i−j|, and

ω′
ev = τ min(diag(Ωvv))11×p. This non-zero nature of ωev captures the presence of endogene-

ity provided that τ ̸= 0, and our experiments set τ = 1 throughout.

Despite its simplicity this DGP captures all the key phenomena that have been the focus

of attention in this literature. Namely, serial correlation and endogeneity.

5.2. Model selection properties of the Adaptive LASSO

In a first instance, we focus our attention on the model selection ability of the adaptive

LASSO by documenting its ability to pick the correct s = 5 active series from the pool
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of p candidate series. Results from this set of experiments are summarized in Tables 1-2

below which present the FPR, FNR and FDR across different parameter configurations, and

obtained as averages across replications. Table 1 focuses on the scenario with strong signals

as described above and Table 2 focuses on the DGP with weaker signals. Note that the

bottom panels of both of these Tables correspond to the spurious regression scenario (ρ = 1)

which we include in order to illustrate our result in Proposition 2.

Table 1: Adaptive LASSO Model Selection - Strong signals

p = 10 p = 50 p = 100
FPR FNR FDR FPR FNR FDR FPR FNR FDR

ρ = 0.00
γ = 1 0.031 0.000 0.025 0.049 0.003 0.217 0.037 0.015 0.289
γ = 2 0.018 0.000 0.014 0.043 0.003 0.199 0.041 0.022 0.302
ρ = 0.50
γ = 1 0.205 0.001 0.147 0.383 0.014 0.768 0.357 0.025 0.870
γ = 2 0.189 0.001 0.138 0.373 0.021 0.766 0.345 0.029 0.868
ρ = 1.00
γ = 1 0.799 0.114 0.470 0.996 0.000 0.900 0.899 0.000 0.944
γ = 2 0.775 0.128 0.466 0.941 0.000 0.894 0.498 0.000 0.904

Table 2: Adaptive LASSO Model Selection - Weak signals

p = 10 p = 50 p = 100
FPR FNR FDR FPR FNR FDR FPR FNR FDR

ρ = 0.00
γ = 1 0.044 0.031 0.038 0.115 0.170 0.487 0.096 0.283 0.648
γ = 2 0.035 0.040 0.031 0.136 0.230 0.560 0.122 0.361 0.738
ρ = 0.50
γ = 1 0.236 0.133 0.191 0.394 0.227 0.815 0.366 0.297 0.906
γ = 2 0.248 0.163 0.208 0.388 0.281 0.825 0.351 0.344 0.909
ρ = 1.00
γ = 1 0.805 0.172 0.492 0.996 0.000 0.900 0.901 0.000 0.944
γ = 2 0.774 0.203 0.492 0.941 0.000 0.894 0.501 0.020 0.906

Looking first at Table 1, which focuses on strong signals, we see clear distinctions across

different parameter settings. When ρ = 0 (i.e., cointegration residuals behave like noise), the

adaptive LASSO often achieves very low FPR and FNR for smaller p. For instance, at p = 10

the FPR is frequently near or below 0.03, and the FNR is close to 0.00 in many instances.
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This indicates that the adaptive LASSO is quite effective at identifying relevant features that

induce cointegration, without including too many spurious ones.

As p grows from 10 to 100, we see that the FDR tends to rise. This makes sense: with more

variables in the model, even modest false positives can lead to higher false discovery rates.

Raising the adaptive LASSO tuning parameter γ from 1 to 2 generally leads to smaller FPR

and FDR, as the penalty more agressively shrinks coefficients of non-informative variables.

Under ρ = 0.5 (more memory in the cointegrated residuals), we observe elevated FPRs

- sometimes as high as 0.37 or 0.38 for p = 50 or 100. Thus a higher ρ which corresponds

to a relatively weaker cointegration strength makes it harder to distinctly isolate the true

signals, thus driving up the probability of including false positives. Nevertheless, the overall

picture that comes across from the top two panels of Table 1 is that the adaptive LASSO is

quite effective in model selection in cointegrated regressions. The outcomes associated with

ρ = 1 also clearly support our result in Proposition 2. The FPR’s jump up significantly (e.g.,

FPR = 0.996 under p = 50 and for γ = 1) illustrating the fact that in a spurious regression

context the adaptive LASSO is essentially similar to performing least squares on the entire

set of predictors.

Turning to Table 2, we now examine the scenario with weak signals. In this more chal-

lenging setting, the adaptive LASSO experiences higher FNRs, as weak true signals are more

likely to be missed. When ρ = 0 and p = 10, performance is relatively stable (FPR < 0.05,

FNR < 0.04), but as soon as p grows to 50 or 100, or ρ increases to 0.5, the selection process

becomes more error-prone. Overall however we view these outcomes as very favorable. They

suggest that the proposed adaptive LASSO works particularly well in cointegrated context

where predictors are I(1) time series. Moreover, the method also appears to be reliable

under a fairly strong degree of endogeneity used in our DGPs. This is in line with standard

least squares based estimation of cointegrated regressions where endogeneity is known not to

influence estimate consistency.
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Table 3 presents replication averages of adaptive LASSO coefficient estimates. Overall,

these outcomes reveal that these estimates show low bias for large or moderate true coefficients.

Smaller coefficients (weak signals) are more prone to bias, especially in scenarios with more

features.

Table 3: Adaptive LASSO Estimator Properties

Strong signals Weak signals
p = 10 p = 50 p = 100 p = 10 p = 50 p = 100

β0 E[β̂AL] E[β̂AL] E[β̂AL] β0 E[β̂AL] E[β̂AL] E[β̂AL]
γ = 1

ρ = 0.0 ρ = 0.0
0.50 0.494 0.427 0.368 0.25 0.253 0.235 0.180
1.50 1.516 1.556 1.587 0.25 0.247 0.223 0.215
0.80 0.802 0.779 0.751 0.25 0.249 0.240 0.228
1.00 1.012 1.006 0.998 0.25 0.247 0.233 0.206
0.00 0.002 0.002 0.002 0.25 0.246 0.203 0.178

ρ = 0.5 ρ = 0.5
0.50 0.498 0.488 0.472 0.25 0.264 0.328 0.276
1.50 1.537 1.592 1.604 0.25 0.260 0.280 0.283
0.80 0.809 0.835 0.811 0.25 0.256 0.280 0.270
1.00 1.020 1.067 1.064 0.25 0.255 0.292 0.270
0.00 0.014 0.043 0.045 0.25 0.240 0.266 0.257

γ = 2
ρ = 0.0 ρ = 0.0
0.50 0.499 0.428 0.349 0.25 0.256 0.248 0.191
1.50 1.514 1.556 1.604 0.25 0.250 0.230 0.230
0.80 0.802 0.788 0.759 0.25 0.250 0.238 0.209
1.00 1.016 1.016 1.014 0.25 0.246 0.243 0.233
0.00 0.001 0.003 0.004 0.25 0.249 0.203 0.181

ρ = 0.5 ρ = 0.5
0.50 0.500 0.500 0.477 0.25 0.272 0.342 0.280
1.50 1.531 1.610 1.634 0.25 0.255 0.293 0.278
0.80 0.822 0.835 0.835 0.25 0.263 0.298 0.305
1.00 1.019 1.087 1.080 0.25 0.271 0.285 0.291
0.00 0.012 0.050 0.048 0.25 0.236 0.285 0.262

5.3. Two-Step cointegration testing

In this section we evaluate the correct detection ability of our proposed model selection based

approach for distinguishing between cointegration (i.e., ẑt behaves like a stationary process)

and no-cointegration (i.e., ẑt behaves like an I(1) process). For the cointegration cases we
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experimented with ρ ∈ {0.00, 0.50} while for the no-cointegration scenarios we set ρ = 1.

Results for these experiments are summarized in Table 4 which displays the frequencies of

choosing the stationary specification and unit-root specifications respectively.

It is useful to recall that the residuals have been formed via a post-adaptive LASSO least

squares estimation on the predictors selected by the adaptive LASSO. For this reason the

scenarios corresponding to strong and weak signals are not expected to deliver significantly

different results as the parameter of importance is ρ rather than the β′s in the cointegrating

regression.

From the outcomes presented in Table 4 we note that when the true model is a cointegrated

regression our proposed model selection approach points to the I(0) outcomes 100% of the

times. When the true model is a spurious regression, correct decision frequencies are near

90% under n = 500, suggesting that the model selection based approach for distinguishing

between the I(0) and I(1)’ness of the residuals is highly effective.

Table 4: Cointegration detection frequencies (γ = 2)

Strong signals p = 10 p = 50 p = 100
True: I(0) (ρ = 0)

Selected I(1) I(0) I(1) I(0) I(1) I(0)
n = 250 0.0 100.0 0.0 100.0 0.0 100.0
n = 500 0.0 100.0 0.0 100.0 0.0 100.0

True: I(0) (ρ = 0.5)
n = 250 0.0 100.0 0.0 100.0 0.0 100.0
n = 500 0.0 100.0 0.0 100.0 0.0 100.0

True: I(1) (ρ = 1.0)
n = 250 82.8 17.2 81.6 18.4 85.2 14.8
n = 500 87.2 12.8 88.0 12.0 86.8 13.2
Weak signals p = 10 p = 50 p = 100

True: I(0) (ρ = 0)
Selected I(1) I(0) I(1) I(0) I(1) I(0)
n = 250 0.0 100.0 0.0 100.0 0.0 100.0
n = 500 0.0 100.0 0.0 100.0 0.0 100.0

True: I(0) (ρ = 0.5)
n = 250 0.0 100.0 0.0 100.0 0.0 100.0
n = 500 0.0 100.0 0.0 100.0 0.0 100.0

True: I(1) (ρ = 1.0)
n = 250 81.0 16.0 81.0 17.9 85.1 13.9
n = 500 87.6 12.4 87.2 12.8 88.8 11.2
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6. Summary and Conclusions

In this paper, we introduced a novel two-step procedure for detecting cointegration in

high-dimensional settings. Our approach addresses the dual challenges of model selection and

residual testing under the assumptions of sparse cointegration. By employing an adaptive

LASSO-based methodology, we achieved model selection consistency, enabling accurate

identification of active covariates that induce cointegration. This ensures that the residuals

used for subsequent testing are well-behaved and closely approximate the true equilibrium

errors when cointegration is present.

The second step of our methodology departs from traditional residual-based testing

techniques, such as ADF or KPSS tests, which are often complicated by the presence of

estimated residuals and high dimensionality. Instead, we adopted an information-theoretic

model selection approach to distinguish between stationary and non-stationary residuals. This

method offers significant advantages, including robustness to serial correlation, endogeneity,

and the number of covariates. Additionally, our approach circumvents the need for asymptotic

distribution-based inferences, which are sensitive to nuisance parameters and computationally

challenging in high-dimensional contexts.

Future research could extend our framework to develop an inference theory for the

parameter estimates obtained via the adaptive LASSO, providing a deeper understanding of

their statistical properties. Additionally, extending the framework to accommodate multiple

cointegrating relationships would open new avenues for analyzing more complex environments

with several long-run equilibrium relationships.

21



Appendix

Notation: (i) For a vector v ∈ Rp, the sign vector is given by sgn(v) = (sgn(v1), . . . , sgn(vp))′

where the sgn(.) function is such that for any c ∈ R, sgn(c) = 1 if c > 0, sgn(c) = 0 if

c = 0, and sgn(c) = −1 if c < 0. (ii) The subdifferential set of ∥.∥1 at v is denoted

∂∥v∥1B (∂|v1|. . . , ∂|vp|)′ where ∂|vi|= {1} if vi > 0, ∂|vi|= [−1, 1] if vi = 0, and ∂|vi|= {−1}

if vi < 0. Thus the subdifferential ∂|vi| is given by sgn(vi) if vi ̸= 0 and by [−1, 1] if vi = 0.

Before proceeding with the proof of Proposition 1 we establish the n-consistency of the

adaptive lasso estimator in Lemma A1 below. Specifically, that n(β̂AL
j − β0

j ) = Op(1) for

j ∈ S and n(β̂AL
j ) = Op(1) for j ∈ Sc. For notational simplicity we omit the fitted intercept

from this analysis. Some steps in our derivations invoke well known results from the unit-

root and cointegration literature which we take as given. Specifically, under our operating

assumptions stated in Section 2, the following large sample results are known to hold (see

e.g., Phillips and Durlauf (1986)):

1
n2

n∑
t=1

xtx
′
t = Op(1) (20)

1
n

√
n

n∑
t=1

xt = Op(1) (21)

1
n

∑
xtzt = Op(1) (22)

from which we also infer that

n(β̃ols
j − βj) = Op(1)

√
n(β̃ols

0 − β0) = Op(1). (23)

In what follows, we also refer to the limits in (20)-(22) as A, C and B respectively.

Lemma A1 As n → ∞, under the conditions λn/n → 0 and λn/n1−γ → ∞, it holds that

n(β̂AL
S − β0

S) = Op(1) and n(β̂AL
Sc − 0) = Op(1).
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Proof of Lemma A1. Consider the adaptive lasso objective function under the local parame-

terization βj = β0
j + uj/n and u = (u1, . . . , up)′

Ln(u) =
n∑

t=1
(yt − x′

t(β0 + u

n
))2 + λn

p∑
j=1

wj|β0
j + uj

n
|

=
n∑

t=1
(zt − 1

n
x′

tu)2 + λn

p∑
j=1

wj|β0
j + uj

n
| (24)

Our goal is to show that ûAL = n(β̂AL − β0) = Op(1) which implies the stated consistency

results. Expanding the square in the first term, we get:

Ln(u) =
n∑

t=1

(
z2

t − 2zt
1
n

x′
tu + 1

n2 (x′
tu)2

)
+ λn

p∑
j=1

wj|β0
j + uj

n
|

=
n∑

t=1
z2

t − 2
n

n∑
t=1

ztx
′
tu + 1

n2

n∑
t=1

u′xtx
′
tu + λn

p∑
j=1

wj|β0
j + uj

n
|

=
n∑

t=1
z2

t − 2
n

n∑
t=1

ztx
′
tu + 1

n2 u′

 n∑
t=1

xtx
′
t

u + λn

p∑
j=1

wj|β0
j + uj

n
| (25)

Let ûAL = n(β̂AL − β0) be the minimizer of Ln(u). We can write:

Ln(u) − Ln(0) = − 2
n

n∑
t=1

ztx
′
tu + 1

n2 u′

 n∑
t=1

xtx
′
t

u + λn

p∑
j=1

wj

(
|β0

j + uj

n
|−|β0

j |
)

(26)

The first two components in the RHS of (26) are both bounded by invoking (20) and (22).

For the third term we proceed by separating active and inactive covariates, splitting it into

two parts, one for the active predictors (j ∈ S) and one for the inactive predictors (j ∈ Sc):

λn

p∑
j=1

wj

(
|β0

j + uj

n
|−|β0

j |
)

= λn

∑
j∈S

wj

(
|β0

j + uj

n
|−|β0

j |
)

+ λn

∑
j∈Sc

wj

(
|β0

j + uj

n
|−|β0

j |
)

(27)

Case j ∈ S (β0
j ̸= 0): we have wj = 1/|β̃ols

j |γ and since β̃ols
j

p→ β0
j by the consistency of

OLS it follows that under this scenario wj
p→ 1/|β0

j |γ, hence wj = Op(1). Next, we invoke

the mean value theorem, being cautious with the fact that the absolute value function is
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non-differentiable at zero. Indeed, if the interval between β0
j and β0

j + uj/n includes zero, the

standard MVT wouldn’t apply. We therefore consider two cases:

(a) β0
j and β0

j + uj

n
have the same sign (i.e. β0

j (β0
j + uj/n) > 0): in this case the absolute

value function is differentiable on the open interval between β0
j and β0

j + uj/n. From

the MVT we therefore obtain

|β0
j + uj

n
|−|β0

j |= uj

n
sign(β0

j +
u∗

j

n
) = uj

n
sign(β0

j ) (28)

where u∗
j lies between 0 and uj , and the last equality follows because β0

j and β0
j + uj/n

have the same sign.

(b) β0
j and β0

j + uj/n have opposite signs (i.e., β0
j (β0

j + uj/n) < 0 ). In this case, zero lies

between β0
j and β0

j + uj/n. However, using the triangle inequality we have

||β0
j + uj

n
|−|β0

j ||≤ |uj

n
| (29)

and this bound is sufficient for our needs since it establishes that the difference in

absolute values is bounded by a term of order 1/n, allowing us to establish the limiting

behaviour of (25).

For this j ∈ S case we therefore have

λn

∑
j∈S

wj n
(

|β0
j + uj

n
|−|β0

j |
)

= λn

n

∑
j∈S

wj n
(

|β0
j + uj

n
|−|β0

j |
)

= λn

n
Op(1)

(
n Op(1/n)

)
(30)

= λn

n
Op(1) = op(1) (31)

since λn/n → 0.

We write (for any j):

Ln(u) − Ln(0) = u′Au − 2u′B + λn

∑
j∈Sc

wj

(
|β0

j + uj

n
|−|β0

j |
)

+ op(1) (32)
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Next, we consider the case j ∈ Sc.

Case j ∈ Sc (β0
j = 0): We now have β0

j = 0 so that from wj = 1/|β̃ols
j |γ we can write

wj

nγ
= 1

|n β̃j

ols
|γ

(33)

and from the properties of least squares in cointegrated regressions it immediately follows

that wj/nγ = Op(1). We can now evaluate the relevant component in the RHS of (25). We

have

λn

∑
j∈Sc

wj

(
|β0

j + uj

n
|−|β0

j |
)

= λn

n1−γ

∑
j∈Sc

wj

nγ
|uj| (34)

giving

λn

∑
j∈Sc

wj

(
|β0

j + uj

n
|−|β0

j |
)

p→ 0 if uj = 0 ∀j ∈ Sc (35)

and

λn

∑
j∈Sc

wj

(
|β0

j + uj

n
|−|β0

j |
)

→ ∞ if uj ̸= 0 for some j ∈ Sc (36)

since λn/n1−γ → ∞ and uj is fixed. In this latter case, the cost becomes unbounded, forcing

uj = 0 for j ∈ Sc. The penalty structure ensures that uj = 0 for all j ∈ Sc at the minimizer.

We can now conclude up to op(1) terms that

Ln(u) − Ln(0) = u′Au − 2u′B +


op(1) if uj = 0 ∀j ∈ Sc

∞ if uj ̸= 0 for some j ∈ Sc

(37)

Remark: Since wj/nγ = Op(1) and λn/n1−γ → ∞, if any uj ̸= 0 for j ∈ Sc, the expression

will diverge to infinity. This forces uj = 0 for all j ∈ Sc at the minimizer.
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Here A and B represent the limits of appropriately scaled sums involving xt and zt. By the

known results on cointegrated regressions (and invoking continuous mapping arguments),

these limits exist and are finite.

Next, (Ln(u) − Ln(0)) is convex in u and the family of convex functions {Ln(u) − Ln(0)}

converges pointwise to L∞(u) which is also convex since it is quadratic with an added infinite

penalty outside a certain subspace. This convergence of (Ln(u)−Ln(0)) to L∞(u) ensures that

for large n, the minimizer of (Ln(u) − Ln(0)) lies near the minimizer of L∞(u). Specifically,

focusing on L∞(u) we note that if uj ̸= 0 for some inactive covariates j ∈ Sc, the objective is

infinite. Thus for minimization we must have uj = 0 for all j ∈ Sc. This effectively constrains

the minimization problem to the subspace where uj = 0 for j ∈ Sc. On that subspace

L∞(u) = u′
SAuS − 2u′

SB, where uS is the subvector of u corresponding to the active set S.

This is a strictly convex quadratic form, ensuring a unique minimizer. The unique minimizer

on that subspace is given by uS = A−1B and uSc = 0. Thus L∞(u) has a unique global

minimizer at (A−1B, 0).

In summary, since (Ln(u)−Ln(0)) is convex and L∞(u) has a unique minimum of (A−1B, 0)′,

following Knight (1999) it holds that ûAL
n B arg minu(Ln(u) − Ln(0)) → arg minu L∞(u) =

(A−1B, 0)′ = Op(1) as required.

Proof of Proposition 1. Let Ln(β0, β) denote the adaptive lasso objective function given by

Ln(β0, β) =
n∑

t=1
(yt − β0 − x′

tβ)2 + λn

p∑
j=1

wj|βj|. (38)

where we have now also included a fitted intercept. The objective function is not differentiable

with respect to βj at βj = 0 due to the absolute value function. Therefore we need to consider
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its subgradient ∂L(β0, β) given by

∂L(β0, β) =



−2∑n
t=1(yt − β0 − x′

tβ)

−2∑n
t=1 x1t(yt − β0 − x′

tβ) + λnw1∂|β1|
...

−2∑n
t=1 xpt(yt − β0 − x′

tβ) + λnwp∂|βp|


(39)

where ∂|βj| is the subdifferential of the absolute value function at βj:

∂|βj| =


sign(βj) if βj ̸= 0,

[−1, 1] if βj = 0.

(40)

At the optimum, the KKT conditions for the adaptive lasso estimator are:

0 ∈ ∂L(β̂AL
0 , β̂AL) (41)

which translate to the following two conditions:

n∑
t=1

(yt − β̂AL
0 − x′

tβ̂
AL) = 0

−2
n∑

t=1
xjt(yt − β̂AL

0 − x′
tβ̂

AL) + λnwj∂|β̂AL
j | = 0 j = 1, . . . , p (42)

where

∂|β̂AL
j |=


sign(β̂AL

j ) if β̂AL
j ̸= 0,

sj if β̂AL
j = 0, where sj ∈ [−1, 1].

(43)

We can now obtain the optimality conditions for the adaptive lasso estimator by analyzing

these KKT conditions. For the intercept condition we have

β̂AL
0 = 1

n

n∑
t=1

(yt − x′
tβ̂

AL) (44)
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and for the slopes, we distinguish between the two cases β̂AL
j ̸= 0 and β̂AL

j = 0. Specifically:

Case β̂AL
j ̸= 0:

If β̂AL
j ̸= 0 then ∂|β̂AL

j |= sign(β̂AL
j ) and the earlier KKT condition becomes

−2
n∑

t=1
xjt(yt − β̂AL

0 − x′
tβ̂

AL) + λnwjsign(β̂AL
j ) = 0 j = 1, . . . , p (45)

implying

n∑
t=1

xjt(yt − β̂AL
0 − x′

tβ̂
AL) = λnwj

2 sign(β̂AL
j ) j = 1, . . . , p (46)

Case β̂AL
j = 0:

If β̂AL
j = 0 then ∂|β̂AL

j |= sj ∈ [−1, 1]. The KKT conditions for βj then become

−2
n∑

t=1
xjt(yt − β̂AL

0 − x′
tβ̂

AL) + λnwjsj = 0 (47)

implying

∣∣∣∣∣∣
n∑

t=1
xjt(yt − β̂AL

0 − x′
tβ̂

AL)

∣∣∣∣∣∣ ≤ λnwj

2 . (48)

Given these optimality conditions, we next aim to establish that under the stated conditions

on λn, the adaptive lasso is model selection consistent.

We recall that wj = 1/|β̃ols
j |γ with γ > 0. It therefore follows that for j ∈ S, β̃ols

j converges

in probability to a nonzero value and therefore wj is bounded, with wj = 1/|β̃ols
j |γ= Op(1).

For j ∈ Sc, we have β̃ols
j = Op(1/n) by the consistency of the OLS estimator. Hence

wj = 1/|β̃ols
j |γ= Op(nγ).

Using these properties of the adaptive weights we next concentrate on the conditions on λn
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that ensure the validity of the KKT conditions. Formally, we need to establish that for j ∈ Sc

and for sufficiently large n, the KKT conditions can only be satisfied if β̂AL
j = 0 (equivalently

that β̂AL
j ̸= 0 cannot occur). Similarly, for j ∈ S, the KKT conditions can only be satisfied

for β̂AL
j ̸= 0 (equivalently, β̂AL

j = 0 cannot occur).

Before proceeding further it is useful to reformulate the KKT conditions by embedding within

them the optimality condition associated with the intercept. This can simply be achieved by

suitably demeaning the variables appearing in the KKT conditions.

n∑
t=1

(ỹt − x̃′
tβ̂

AL) = 1
2λn wj sign(β̂AL

j ) if β̂AL
j ̸= 0, j = 1, . . . , p (49)∣∣∣∣∣∣

n∑
t=1

xjt(ỹt − x̃′
tβ̂

AL)

∣∣∣∣∣∣ ≤ 1
2λnwj if β̂AL

j = 0, j = 1, . . . , p. (50)

Using (49)-(50) we next aim to show that P (β̂AL
j = 0 ∀j ∈ Sc) → 1 and P (β̂AL

j ̸= 0 ∀j ∈

S) → 1 so that model selection consistency of the adaptive lasso is established.

We proceed by contradiction:

Case j ∈ Sc: suppose that β̂AL
j ̸= 0 (i.e., contradiction) so that (49) would be expected to

hold. Normalizing both its sides by n gives

1
n

n∑
t=1

(ỹt − x̃′
tβ̂

AL) = 1
2

λn

n
wj sign(β̂AL

j ). (51)

Since j ∈ Sc, wj = Op(nγ), implying

λn

n
wj = λn

n1−γ
Op(1). (52)

Focusing on the LHS we note that for irrelevant variables in a correctly specified model (i.e.

after including all j ∈ S), the residual (ỹt − x̃′
tβ̂

AL) is (zt + op(1)), a stationary sequence.

It therefore follows that the LHS in (51) is Op(1) while its RHS diverges to infinity by

λn/n1−γ → ∞, a contradiction implying that β̂AL
j cannot be nonzero for j ∈ Sc. We conclude
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that P (β̂AL
j = 0 ∀j ∈ Sc) → 1 as n → ∞ and as stated.

Case j ∈ S: Supppose that β̂AL
j = 0 (i.e., a contradiction) so that (50) would be expected to

hold. Normalizing both of its sides by n we rewrite it as

∣∣∣∣∣∣− 1
n

n∑
t=1

xjt(ỹt − x̃′
tβ̂

AL,−j)

∣∣∣∣∣∣ ≤ λn

n
wj (53)

where β̂AL,−j refers to β̂AL with its jth component replaced by zero when evaluating the

residual. Here since β̃ols
j

p→ βj we have wj
p→ |βj|−γ a bounded quantity. If β̂AL

j = 0, omitting

a true active predictor leads to a residual sequence containing an I(1) component. For large

n therefore

1
n

n∑
t=1

xjt(ỹt − x̃′
tβ̂

AL,−j) = Op(n) (54)

so that with λn/n → 0, ∃N ′ > 0 such that ∀n > N ′

P


∣∣∣∣∣∣− 1

n

n∑
t=1

xjt(ỹt − x̃′
tβ̂

AL,−j)

∣∣∣∣∣∣ >
λn

n
wj

 → 1 (55)

hence a contradiction to β̂AL
j = 0. Thus P (β̂AL

j ̸= 0 ∀j ∈ S) → 1, as stated.

Proof of Proposition 2. Here we show that if zt is truly I(1) with no cointegration, and if λn

is such that λn/n → 0 then the adaptive LASSO penalty effectively shrinks nothing to zero,

i.e., it selects (nearly) all predictors with high probability. Recall that in a spurious regression

setting the least squares estimates β̃ols
j are Op(1). As a result, the adaptive LASSO weights

also satisfy wj = Op(1), that is, all adaptive weights remain bounded away from ∞ and from

0. From the KKT condition in (50) we note that the LHS is not shrinking, being an Op(1)

random variable, while the right hand side tends to 0 since λnwj = o(n). Therefore with high

probability, the inequality fails for each j, so β̂AL
j ̸= 0 and all predictors remain active.

Proof of Proposition 3. For simplicity we set µ = 0 and k = 0 in the auxiliary re-
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gressions. Part (i): here the true model is a spurious regression with ẑt ∼ (1). From

n(σ2
0 − σ2

1) = −ϕ̂2∑ ẑ2
t−1 + 2ϕ̂

∑
ẑt−1∆ẑt and the properties of I(1) processes it immediately

follows that n(σ2
0 − σ2

1) = Op(1) and σ2
1 converges in probability to a finite limit. Next,

P (IC0 < IC1) = P (n ln σ2
0/σ2

1 < cn). Since n ln σ2
0/σ2

1 = Op(1) and cn → ∞ it immedi-

ately follows that P (IC0 < IC1|M0) → 1 as required. Part (ii) Here the true model is

a cointegrated regression with ẑt ∼ I(0). We have P (IC1 < IC0) = P (ln σ2
0/σ2

1 > cn

n
).

Since now ln σ2
0/σ2

1 is strictly positive with high probability and cn/n → 1, it follows that

P (IC1 < IC0|M1) → 1 as required.
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